Area is the main concept which is explained in brief under the exercise 10.2. The amount of surface which is occupied by a closed figure is its area. Students who follow NCERT textbook of current CBSE syllabus can make use of solutions prepared by subject matter experts to ace the exam with good score. In order to obtain a hold on these concepts, students can refer NCERT Solutions Class 6 Maths Chapter 10 Mensuration Exercise 10.2 free PDF from the links, which are provided below.
NCERT Solutions for Class 6 Chapter 10: Mensuration Exercise 10.2 Download PDF
Â
Â
Access NCERT Solutions for Class 6 Chapter 10: Mensuration Exercise 10.2
1. Find the areas of the following figures by counting square:
(a) The figure contains only 9 fully filled squares. Hence, the area of this figure will be 9 square units.
(b) The figure contains only 5 fully filled squares. Hence, the area of this figure will be 5 square units.
(c) The figure contains 2 fully filled squares and 4 half filled squares. Hence, the area of this figure will be 4 square units.
(d) The figure contains only 8 fully filled squares. Hence, the area of this figure will be 8 square units.
(e) The figure contains only 10 fully filled squares. Hence, the area of this figure will be 10 square units.
(f) The figure contains only 2 fully filled squares and 4 half filled squares. Hence, the area of this figure will be 4 square units.
(g) The figure contains 4 fully filled squares and 4 4 half filled squares. Hence, the area of this figure will be 6 square units.
(h) The figure contains 5 fully filled squares. Hence, the area of this figure will be 5 square units.
(i) The figure contains 9 fully filled squares. Hence, the area of this figure will be 9 square units.
(j) The figure contains 2 fully filled squares and 4 half filled squares. Hence, the area of this figure will be 4 square units.
(k) The figure contains 4 fully filled squares and 2 half filled squares. Hence, the area of this figure will be 5 square units.
(l) From the given figure, we observe
Covered Area |
Number |
Area estimate (square units) |
Fully filled squares |
2 |
2 |
Half filled squares |
– |
– |
More than half filled squares |
6 |
6 |
Less than half filled squares |
6 |
0 |
Therefore total area = 2 + 6
= 8 square units.
(m) From the given figure, we observe
Covered Area |
Number |
Area estimate (square units) |
Fully filled squares |
5 |
5 |
Half filled squares |
– |
– |
More than half filled squares |
9 |
9 |
Less than half filled squares |
12 |
0 |
Therefore total area = 5 + 9
= 14 square units
(n) From the given figure, we observe
Covered Area |
Number |
Area estimate (square units) |
Fully filled squares |
8 |
8 |
Half filled squares |
– |
– |
More than half filled squares |
10 |
10 |
Less than half filled squares |
9 |
0 |
Therefore total area = 8 + 10 = 18 square units