RD Sharma Solutions for Class 10 Maths Chapter 4 Triangles Exercise 4.4

More on the basic proportionality theorem is discussed in this exercise. A few problems to strengthen the key concepts are done by solving them in the right manner. To know how to present and make your solutions mistake-free, students can access the RD Sharma Solutions Class 10. Students aspiring to score high marks can download the RD Sharma Solutions for Class 10 Maths Chapter 4 Triangles Exercise 4.4 PDF provided below.

RD Sharma Solutions for Class 10 Maths Chapter 4 Triangles Exercise 4.4

Download PDF Download PDF

Access RD Sharma Solutions for Class 10 Maths Chapter 4 Triangles Exercise 4.4

1. (i) In fig. 4.70, if AB∥CD, find the value of x.

Solution:

It’s given that AB∥CD.

Required to find the value of x.

C:\Users\Tnluser\Downloads\extra-images-of-RD-Sharma-Chapter-4--ex-4.4-3.png

We know that,

Diagonals of a parallelogram bisect each other.

So,

AO/ CO = BO/ DO

⇒ 4/ (4x – 2) = (x +1)/ (2x + 4)

4(2x + 4) = (4x – 2)(x +1)

8x + 16 = x(4x – 2) + 1(4x – 2)

8x + 16 = 4x2 – 2x + 4x – 2

-4x2 + 8x + 16 + 2 – 2x = 0

-4x+ 6x + 8 = 0

4x2 – 6x – 18 = 0

4x2 – 12x + 6x – 18 = 0

4x(x – 3) + 6(x – 3) = 0

(4x + 6) (x – 3) = 0

x = – 6/4 or x = 3

(ii)  In fig. 4.71, if AB∥CD, find the value of x.

Solution:

It’s given that AB∥CD.

Required to find the value of x.

C:\Users\Tnluser\Downloads\extra-images-of-RD-Sharma-Chapter-4--ex-4.4-1.png

We know that,

Diagonals of a parallelogram bisect each other

So,

AO/ CO = BO/ DO

⇒ (6x – 5)/ (2x + 1) = (5x – 3)/ (3x – 1)

(6x – 5)(3x – 1) = (2x + 1)(5x – 3)

3x(6x – 5) – 1(6x – 5) = 2x(5x – 3) + 1(5x – 3)

18x2 – 10x2 – 21x + 5 + x +3 = 0

8x2 – 16x – 4x + 8 = 0

8x(x – 2) – 4(x – 2) = 0

(8x – 4)(x – 2) = 0

x = 4/8 = 1/2 or x = -2

x= 1/2

(iii) In fig. 4.72, if AB ∥ CD. If OA = 3x – 19, OB = x – 4, OC = x- 3 and OD = 4, find x.

Solution:

It’s given that AB∥CD.

Required to find the value of x.

C:\Users\Tnluser\Downloads\extra-images-of-RD-Sharma-Chapter-4--ex-4.4-2.png

We know that,

Diagonals of a parallelogram bisect each other

So,

AO/ CO = BO/ DO

(3x – 19)/ (x – 3) = (x–4)/ 4

4(3x – 19) = (x – 3) (x – 4)

12x – 76 = x(x – 4) -3(x – 4)

12x – 76 = x2 – 4x – 3x + 12

-x2 + 7x – 12 + 12x -76 = 0

-x+ 19x – 88 = 0

x– 19x + 88 = 0

x2 – 11x – 8x + 88 = 0

x(x – 11) – 8(x – 11) = 0

x = 11 or x = 8


Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*

Tuition Center
Tuition Centre
free trial
Free Trial Class
Scholarship Test
Scholarship Test
Question and Answer
Question & Answer