Exercise 5.2 of this chapter has problems based on trigonometric ratios of some specific angles like 0, 30, 45, 60 and 90. Expressions are to be evaluated by using the value of these trigonometric ratios. As a student, if you are having difficulty understanding and solving such problems, BYJU’S has created the RD Sharma Solutions Class 10 just for you to give a better experience of learning. For more reference on problems in this exercise, students can download the RD Sharma Solutions for Class 10 Maths Chapter 5 Trigonometric Ratios Exercise 5.2 PDF available below.
RD Sharma Solutions for Class 10 Maths Chapter 5 Trigonometric Ratios Exercise 5.2 Download PDF
Access RD Sharma Solutions for Class 10 Maths Chapter 5 Trigonometric Ratios Exercise 5.2
Evaluate each of the following:
1. sin 45∘ sin 30∘ + cos 45∘ cos 30∘
Solution:
2. sin 60∘ cos 30∘ + cos 60∘ sin 30∘
Solution:
3. cos 60∘ cos 45∘ – sin 60∘ sin 45∘
Solution:
4. sin2 30∘ + sin2 45∘ + sin2 60∘ + sin2 90∘
Solution:
5. cos2 30∘ + cos2 45∘ + cos2 60∘ + cos2 90∘
Solution:
6. tan2 30∘ + tan2 45∘ + tan2 60∘
Solution:
7. 2sin2 30∘ − 3cos2 45∘ + tan2 60∘
Solution:
8. sin2 30∘ cos245∘ + 4tan2 30∘ + (1/2) sin2 90∘ − 2cos2 90∘ + (1/24) cos20∘
Solution:
9. 4(sin4 60∘ + cos4 30∘) − 3(tan2 60∘ − tan2 45∘) + 5cos2 45∘
Solution:
10. (cosec2 45∘ sec2 30∘)(sin2 30∘ + 4cot2 45∘ − sec2 60∘)
Solution:
11. cosec3 30∘ cos60∘ tan3 45∘ sin2 90∘ sec2 45∘ cot30∘
Solution:
12. cot2 30∘ − 2cos2 60∘ − (3/4)sec2 45∘ – 4sec2 30∘
Solution:
Using trigonometric values, we have
13. (cos0∘ + sin45∘ + sin30∘)(sin90∘ − cos45∘ + cos60∘)
Solution:
(cos0∘ + sin45∘ + sin30∘)(sin90∘ − cos45∘ + cos60∘)
Using trigonometric values, we have
15. 4/cot2 30∘ + 1/sin2 60∘ − cos2 45∘
Solution:
16. 4(sin4 30∘ + cos2 60∘) − 3(cos2 45∘ − sin2 90∘) − sin2 60∘
Solution:
Using trigonometric values, we have
17.
Solution:
Using trigonometric values, we have
18.
Solution:
Using trigonometric values, we have
19.
Solution:
Using trigonometric values, we have
Find the value of x in each of the following: (20-25)
20. 2sin 3x = √3
Solution:
Given,
2 sin 3x = √3
sin 3x = √3/2
sin 3x = sin 60°
3x = 60°
x = 20°
Comments