RD Sharma Solutions for Class 12 Maths Chapter 7 – Free PDF Download Updated for 2023-24
RD Sharma Solutions for Class 12 Maths Chapter 7 – Adjoint and Inverse of a Matrix are provided here. The RD Sharma textbook contains a huge number of solved examples and illustrations. It also provides quality content, easy step-wise explanations of various difficult concepts and a wide variety of questions for practice. RD Sharma Solutions for Class 12 Chapter 7 are based on the exam-oriented approach to help the students in the board exams. The PDF of RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix is provided here.
Practising these RD Sharma Solutions for Class 12 will ensure that the students can easily excel in their final examination of Mathematics. Students can refer to and download Chapter 7 Adjoint and Inverse of a Matrix from the given links. This chapter is based on the adjoint of a square matrix and its properties. RD Sharma Solutions cover all the topics related to it.
Some of the essential topics in the RD Sharma Solutions of this chapter are listed below.
- Definition and meaning of adjoint of a square matrix
- The inverse of a matrix
- Some useful results on invertible matrices
- Determining the adjoint and inverse of a matrix
- Determining the inverse of a matrix when it satisfies the matrix equation
- Finding the inverse of a matrix by using the definition of inverse
- Finding a non-singular matrix when adjoint is given
- Elementary transformation or elementary operations of a matrix
- Method of finding the inverse of a matrix by elementary transformation
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix:
Also, access RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix
Access answers to Maths RD Sharma Solutions For Class 12 Chapter 7 – Adjoint and Inverse of a Matrix
Exercise 7.1 Page No: 7.22
1. Find the adjoint of each of the following matrices:
Verify that (adj A) A = |A| I = A (adj A) for the above matrices.
Solution:
(i) Let
A =
Cofactors of A are
C11 = 4
C12 = – 2
C21 = – 5
C22 = – 3
(ii) Let
A =
Therefore cofactors of A are
C11 = d
C12 = – c
C21 = – b
C22 = a
(iii) Let
A =
Therefore cofactors of A are
C11 = cos α
C12 = – sin α
C21 = – sin α
C22 = cos α
(iv) Let
A =
Therefore cofactors of A are
C11 = 1
C12 = tan α/2
C21 = – tan α/2
C22 = 1
2. Compute the adjoint of each of the following matrices.
Solution:
(i) Let
A =
Therefore cofactors of A are
C11 = – 3
C21 = 2
C31 = 2
C12 = 2
C22 = – 3
C23 = 2
C13 = 2
C23 = 2
C33 = – 3
(ii) Let
A =
Cofactors of A
C11 = 2
C21 = 3
C31 = – 13
C12 = – 3
C22 = 6
C32 = 9
C13 = 5
C23 = – 3
C33 = – 1
(iii) Let
A =
Therefore cofactors of A
C11 = – 22
C21 = 11
C31 = – 11
C12 = 4
C22 = – 2
C32 = 2
C13 = 16
C23 = – 8
C33 = 8
(iv) Let
A =
Therefore cofactors of A
C11 = 3
C21 = – 1
C31 = 1
C12 = – 15
C22 = 7
C32 = – 5
C13 = 4
C23 = – 2
C33 = 2
Solution:
Given
A =
Therefore cofactors of A
C11 = 30
C21 = 12
C31 = – 3
C12 = – 20
C22 = – 8
C32 = 2
C13 = – 50
C23 = – 20
C33 = 5
Solution:
Given
A =
Cofactors of A
C11 = – 4
C21 = – 3
C31 = – 3
C12 = 1
C22 = 0
C32 = 1
C13 = 4
C23 = 4
C33 = 3
Solution:
Given
A =
Cofactors of A are
C11 = – 3
C21 = 6
C31 = 6
C12 = – 6
C22 = 3
C32 = – 6
C13 = – 6
C23 = – 6
C33 = 3
Solution:
Given
A =
Cofactors of A are
C11 = 9
C21 = 19
C31 = – 4
C12 = 4
C22 = 14
C32 = 1
C13 = 8
C23 = 3
C33 = 2
7. Find the inverse of each of the following matrices:
Solution:
(i) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
Now, |A| = cos θ (cos θ) + sin θ (sin θ)
= 1
Hence, A – 1 exists.
Cofactors of A are
C11 = cos θ
C12 = sin θ
C21 = – sin θ
C22 = cos θ
(ii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
Now, |A| = – 1 ≠ 0
Hence, A – 1 exists.
Cofactors of A are
C11 = 0
C12 = – 1
C21 = – 1
C22 = 0
(iii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
(iv) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
Now, |A| = 2 + 15 = 17 ≠ 0
Hence, A – 1 exists.
Cofactors of A are
C11 = 1
C12 = 3
C21 = – 5
C22 = 2
8. Find the inverse of each of the following matrices.
Solution:
(i) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
|A| =
= 1(6 – 1) – 2(4 – 3) + 3(2 – 9)
= 5 – 2 – 21
= – 18≠ 0
Hence, A – 1 exists
Cofactors of A are
C11 = 5
C21 = – 1
C31 = – 7
C12 = – 1
C22 = – 7
C32 = 5
C13 = – 7
C23 = 5
C33 = – 1
(ii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
|A| =
= 1 (1 + 3) – 2 (– 1 + 2) + 5 (3 + 2)
= 4 – 2 + 25
= 27≠ 0
Hence, A – 1 exists
Cofactors of A are
C11 = 4
C21 = 17
C31 = 3
C12 = – 1
C22 = – 11
C32 = 6
C13 = 5
C23 = 1
C33 = – 3
(iii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
|A| =
= 2(4 – 1) + 1(– 2 + 1) + 1(1 – 2)
= 6 – 2
= – 4≠ 0
Hence, A – 1 exists
Cofactors of A are
C11 = 3
C21 = 1
C31 = – 1
C12 = + 1
C22 = 3
C32 = 1
C13 = – 1
C23 = 1
C33 = 3
(iv) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
|A| =
= 2(3 – 0) – 0 – 1(5)
= 6 – 5
= 1≠ 0
Hence, A – 1 exists
Cofactors of A are
C11 = 3
C21 = – 1
C31 = 1
C12 = – 15
C22 = 6
C32 = – 5
C13 = 5
C23 = – 2
C33 = 2
(v) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
|A| =
= 0 – 1 (16 – 12) – 1 (– 12 + 9)
= – 4 + 3
= – 1≠ 0
Hence, A – 1 exists
Cofactors of A are
C11 = 0
C21 = – 1
C31 = 1
C12 = – 4
C22 = 3
C32 = – 4
C13 = – 3
C23 = 3
C33 = – 4
(vi) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
|A| =
= 0 – 0 – 1(– 12 + 8)
= 4≠ 0
Hence, A – 1 exists
Cofactors of A are
C11 = – 8
C21 = 4
C31 = 4
C12 = 11
C22 = – 2
C32 = – 3
C13 = – 4
C23 = 0
C33 = 0
(vii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.
|A| =
– 0 + 0
= – (cos2 α – sin2 α)
= – 1≠ 0
Hence, A – 1 exists
Cofactors of A are
C11 = – 1
C21 = 0
C31 = 0
C12 = 0
C22 = – cos α
C32 = – sin α
C13 = 0
C23 = – sin α
C33 = cos α
9. Find the inverse of each of the following matrices and verify that A-1A = I3.
Solution:
(i) We have
|A| =
= 1(16 – 9) – 3(4 – 3) + 3(3 – 4)
= 7 – 3 – 3
= 1≠ 0
Hence, A – 1 exists
Cofactors of A are
C11 = 7
C21 = – 3
C31 = – 3
C12 = – 1
C22 = 1
C32 = 0
C13 = – 1
C23 = 0
C33 = 1
(ii) We have
|A| =
= 2(8 – 7) – 3(6 – 3) + 1(21 – 12)
= 2 – 9 + 9
= 2≠ 0
Hence, A – 1 exists
Cofactors of A are
C11 = 1
C21 = 1
C31 = – 1
C12 = – 3
C22 = 1
C32 = 1
C13 = 9
C23 = – 5
C33 = – 1
10. For the following pair of matrices verify that (AB)-1 = B-1A-1.
Solution:
(i) Given
Hence, (AB)-1 = B-1A-1
(ii) Given
Hence, (AB)-1 = B-1A-1
Solution:
Given
Solution:
Given
Solution:
Given
Solution:
Solution:
Given
A =
and B – 1 =
Here, (AB) – 1 = B – 1 A – 1
|A| = – 5 + 4 = – 1
Cofactors of A are
C11 = – 1
C21 = 8
C31 = – 12
C12 = 0
C22 = 1
C32 = – 2
C13 = 1
C23 = – 10
C33 = 15
(i) [F (α)]-1 = F (-α)
(ii) [G (β)]-1 = G (-β)
(iii) [F (α) G (β)]-1 = G (-β) F (-α)
Solution:
(i) Given
F (α) =
|F (α)| = cos2 α + sin2 α = 1≠ 0
Cofactors of A are
C11 = cos α
C21 = sin α
C31 = 0
C12 = – sin α
C22 = cos α
C32 = 0
C13 = 0
C23 = 0
C33 = 1
(ii) We have
|G (β)| = cos2 β + sin2 β = 1
Cofactors of A are
C11 = cos β
C21 = 0
C31 = -sin β
C12 = 0
C22 = 1
C32 = 0
C13 = sin β
C23 = 0
C33 = cos β
(iii) Now we have to show that
[F (α) G (β)] – 1 = G (– β) F (– α)We have already know that
[G (β)] – 1 = G (– β) [F (α)] – 1 = F (– α)And LHS = [F (α) G (β)] – 1
= [G (β)] – 1 [F (α)] – 1
= G (– β) F (– α)
Hence = RHS
Solution:
Consider,
Solution:
Given
Solution:
Given
Exercise 7.2 Page No: 7.34
Find the inverse of the following matrices by using elementary row transformations:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Frequently Asked Questions on RD Sharma Solutions for Class 12 Maths Chapter 7
How can students get the RD Sharma Solutions for Class 12 Maths Chapter 7 online?
Does BYJU’S provide precise solutions to RD Sharma Class 12 Maths Chapter 7?
Are the RD Sharma Class 12 Maths Solutions Chapter 7 sufficient for CBSE students?
How can we achieve high marks in Chapter 7 of RD Sharma Solutions for Class 12 Maths?
RD Sharma Solutions for Class 12 Maths Chapter 7 are well-structured by experts at BYJU’S with the intention to provide the best study materials for students. The solutions, developed explaining each step in a precise manner, help students secure more marks in the final as well as other competitive exams. Practising these solutions enables students to complete their assignments on time without any obstacles.
How do RD Sharma Solutions for Class 12 Maths Chapter 7 boost students’ problem-solving skills?
RD Sharma Solutions are designed by experts who hold vast experience in the respective subject. The solutions are well-curated in simple and easy-to-understand language to make learning interesting for students. Regular practice of textbook problems using RD Sharma Solutions clears doubts immediately. The detailed explanation of each step helps students to improve time management and problem-solving skills, which are essential for the board exam.
Comments