NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Exercise 3.3 have been provided here for students to prepare well for the board exam. The steps given in the examples have been followed while providing the NCERT Solutions for Class 11 for the questions present in the exercises. These solutions have been prepared by the subject experts at BYJU’S and are in accordance with the latest CBSE Syllabus 2023-24.
Exercise 3.3 of NCERT Solutions for Class 11 Maths Chapter 3 – Trigonometric Functions are based on Trigonometric Functions of Sum and Difference of Two Angles. Some of these functions are:
- sin (– x) = – sin x
- cos (– x) = cos x
- cos (x + y) = cos x cos y – sin x sin y
- cos (x – y) = cos x cos y + sin x sin y
- sin (x + y) = sin x cos y + cos x sin y
- sin (x – y) = sin x cos y – cos x sin y
NCERT Solutions for Class 11 Maths Chapter 3 – Trigonometric Functions Exercise 3.3
Access other exercise solutions of Class 11 Maths Chapter 3 – Trigonometric Functions
To solve more Trigonometric Function related problems from NCERT Class 11 Maths Solutions, use the links here.
Exercise 3.1 Solutions 7 Questions
Exercise 3.2 Solutions 10 Questions
Exercise 3.4 Solutions 9 Questions
Miscellaneous Exercise On Chapter 3 Solutions 10 Questions
Access Solutions for Class 11 Maths Chapter 3.3 Exercise
Prove that:
1.
Solution:
2.
Solution:
Here
= 1/2 + 4/4
= 1/2 + 1
= 3/2
= RHS
3.
Solution:
4.
Solution:
5. Find the value of:
(i) sin 75o
(ii) tan 15o
Solution:
(ii) tan 15°
It can be written as
= tan (45° – 30°)
Using formula
Prove the following:
6.
Solution:
7.
Solution:
8.
Solution:
9.
Solution:
Consider
It can be written as
= sin x cos x (tan x + cot x)
So we get
10. sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
Solution:
LHS = sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x
11.
Solution:
Consider
Using the formula
12. sin2 6x – sin2 4x = sin 2x sin 10x
Solution:
13. cos2 2x – cos2 6x = sin 4x sin 8x
Solution:
We get
= [2 cos 4x cos (-2x)] [-2 sin 4x sin (-2x)]
It can be written as
= [2 cos 4x cos 2x] [–2 sin 4x (–sin 2x)]
So we get
= (2 sin 4x cos 4x) (2 sin 2x cos 2x)
= sin 8x sin 4x
= RHS
14. sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Solution:
By further simplification
= 2 sin 4x cos (– 2x) + 2 sin 4x
It can be written as
= 2 sin 4x cos 2x + 2 sin 4x
Taking common terms
= 2 sin 4x (cos 2x + 1)
Using the formula
= 2 sin 4x (2 cos2 x – 1 + 1)
We get
= 2 sin 4x (2 cos2 x)
= 4cos2 x sin 4x
= R.H.S.
15. cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Solution:
Consider
LHS = cot 4x (sin 5x + sin 3x)
It can be written as
Using the formula
= 2 cos 4x cos x
Hence, LHS = RHS.
16.
Solution:
Consider
Using the formula
17.
Solution:
18.
Solution:
19.
Solution:
20.
Solution:
21.
Solution:
22. cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Solution:
23.
Solution:
Consider
LHS = tan 4x = tan 2(2x)
By using the formula
24. cos 4x = 1 – 8sin2 x cos2 x
Solution:
Consider
LHS = cos 4x
We can write it as
= cos 2(2x)
Using the formula cos 2A = 1 – 2 sin2 A
= 1 – 2 sin2 2x
Again by using the formula sin2A = 2sin A cos A
= 1 – 2(2 sin x cos x) 2
So we get
= 1 – 8 sin2x cos2x
= R.H.S.
25. cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Solution:
Consider
L.H.S. = cos 6x
It can be written as
= cos 3(2x)
Using the formula cos 3A = 4 cos3 A – 3 cos A
= 4 cos3 2x – 3 cos 2x
Again by using formula cos 2x = 2 cos2 x – 1
= 4 [(2 cos2 x – 1)3 – 3 (2 cos2 x – 1)
By further simplification
= 4 [(2 cos2 x) 3 – (1)3 – 3 (2 cos2 x) 2 + 3 (2 cos2 x)] – 6cos2 x + 3
We get
= 4 [8cos6x – 1 – 12 cos4x + 6 cos2x] – 6 cos2x + 3
By multiplication
= 32 cos6x – 4 – 48 cos4x + 24 cos2 x – 6 cos2x + 3
On further calculation
= 32 cos6x – 48 cos4x + 18 cos2x – 1
= R.H.S.
Comments