RD Sharma Solutions for Class 12 Maths Exercise 4.13 Chapter 4 Inverse Trigonometric Functions

RD Sharma Solutions for Class 12 Maths Exercise 4.13 of Chapter 4 Inverse Trigonometric Functions in PDF are available here. Students can refer to and download them from the available links. This exercise has four main questions. RD Sharma Solutions for Class 12 provide solutions for all topics covered in this exercise. This exercise deals with the properties of inverse trigonometric functions with a step-wise explanation.

RD Sharma Solutions for Class 12 Chapter 4 – Inverse Trigonometric Functions Exercise 4.13

Download PDF Download PDF

Access answers to Maths RD Sharma Solutions for Class 12 Chapter 4 – Inverse Trigonometric Functions Exercise 4.13

Exercise 4.13 Page No: 4.92

1. If cos-1 (x/2) + cos-1 (y/3) = α, then prove that 9x2 – 12xy cos α + 4y2 = 36 sin2 α

Solution:

Given cos-1 (x/2) + cos-1 (y/3) = α

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 63

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 64

Hence, proved.

2. Solve the equation: cos-1 (a/x) – cos-1 (b/x) = cos-1 (1/b) – cos-1 (1/a)

Solution:

Given cos-1 (a/x) – cos-1 (b/x) = cos-1 (1/b) – cos-1 (1/a)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 65

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 66

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 67


Access other exercises of RD Sharma Solutions for Class 12 Chapter 4 – Inverse Trigonometric Functions

Exercise 4.1 Solutions

Exercise 4.2 Solutions

Exercise 4.3 Solutions

Exercise 4.4 Solutions

Exercise 4.5 Solutions

Exercise 4.6 Solutions

Exercise 4.7 Solutions

Exercise 4.8 Solutions

Exercise 4.9 Solutions

Exercise 4.10 Solutions

Exercise 4.11 Solutions

Exercise 4.12 Solutions

Exercise 4.14 Solutions

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*

Tuition Center
Tuition Centre
free trial
Free Trial Class
Scholarship Test
Scholarship Test
Question and Answer
Question & Answer