Our subject expert team has designed the solutions for RD Sharma Solutions for Class 12 Maths Exercise 4.14 Chapter 4 Inverse Trigonometric Functions to help students prepare for their exams with ease. RD Sharma Solutions for Class 12 are the best reference materials for CBSE students. Learners can download the PDF from the links provided below.
Experts suggest students practise the solutions to secure good results in their exams. In Exercise 4.14 of Chapter 4 Inverse Trigonometric Functions, we shall discuss the ASA congruence condition for two congruent triangles and their properties.
RD Sharma Solutions for Class 12 Chapter 4 – Inverse Trigonometric Functions Exercise 4.14
Access answers to Maths RD Sharma Solutions for Class 12 Chapter 4 – Inverse Trigonometric Functions Exercise 4.14
Exercise 4.14 Page No: 4.115
1. Evaluate the following:
(i) tan {2 tan-1 (1/5) – π/4}
(ii) Tan {1/2 sin-1 (3/4)}
(iii) Sin {1/2 cos-1 (4/5)}
(iv) Sin (2 tan -1 2/3) + cos (tan-1 √3)
Solution:
(i) Given tan {2 tan-1 (1/5) – π/4}
(ii) Given tan {1/2 sin-1 (3/4)}
(iii) Given sin {1/2 cos-1 (4/5)}
(iv) Given Sin (2 tan -1 2/3) + cos (tan-1 √3)
2. Prove the following results:
(i) 2 sin-1 (3/5) = tan-1 (24/7)
(ii) tan-1 ¼ + tan-1 (2/9) = ½ cos-1 (3/5) = ½ sin-1 (4/5)
(iii) tan-1 (2/3) = ½ tan-1 (12/5)
(iv) tan-1 (1/7) + 2 tan-1 (1/3) = π/4
(v) sin-1 (4/5) + 2 tan-1 (1/3) = π/2
(vi) 2 sin-1 (3/5) – tan-1 (17/31) = π/4
(vii) 2 tan-1 (1/5) + tan-1 (1/8) = tan-1 (4/7)
(viii) 2 tan-1 (3/4) – tan-1 (17/31) = π/4
(ix) 2 tan-1 (1/2) + tan-1 (1/7) = tan-1 (31/17)
(x) 4 tan-1(1/5) – tan-1(1/239) = π/4
Solution:
(i) Given 2 sin-1 (3/5) = tan-1 (24/7)
Hence, proved.
(ii) Given tan-1 ¼ + tan-1 (2/9) = ½ cos-1 (3/5) = ½ sin-1 (4/5)
Hence, proved.
(iii) Given tan-1 (2/3) = ½ tan-1 (12/5)
Hence, proved.
(iv) Given tan-1 (1/7) + 2 tan-1 (1/3) = π/4
Hence, proved.
(v) Given sin-1 (4/5) + 2 tan-1 (1/3) = π/2
(vi) Given 2 sin-1 (3/5) – tan-1 (17/31) = π/4
(vii) Given 2 tan-1 (1/5) + tan-1 (1/8) = tan-1 (4/7)
Hence, proved.
(viii) Given 2 tan-1 (3/4) – tan-1 (17/31) = π/4
Hence, proved.
(ix) Given 2 tan-1 (1/2) + tan-1 (1/7) = tan-1 (31/17)
Hence, proved.
(x) Given 4 tan-1(1/5) – tan-1(1/239) = π/4
Hence, proved.
3. If sin-1 (2a/1 + a2) – cos-1(1 – b2/1 + b2) = tan-1(2x/1 – x2), then prove that x = (a – b)/ (1 + a b)
Solution:
Given sin-1 (2a/1 + a2) – cos-1(1 – b2/1 + b2) = tan-1(2x/1 – x2)
Hence, proved.
4. Prove that:
(i) tan-1{(1 – x2)/ 2x)} + cot-1{(1 – x2)/ 2x)} = π/2
(ii) sin {tan-1 (1 – x2)/ 2x) + cos-1 (1 – x2)/ (1 + x2)} = 1
Solution:
(i) Given tan-1{(1 – x2)/ 2x)} + cot-1{(1 – x2)/ 2x)} = π/2
Hence, proved.
(ii) Given sin {tan-1 (1 – x2)/ 2x) + cos-1 (1 – x2)/ (1 + x2)}
Hence, proved.
5. If sin-1 (2a/ 1+ a2) + sin-1 (2b/ 1+ b2) = 2 tan-1 x, prove that x = (a + b/ 1 – a b)
Solution:
Given sin-1 (2a/ 1+ a2) + sin-1 (2b/ 1+ b2) = 2 tan-1 x
Hence, proved.
Comments