To excel in annual exams, students can access the free PDF of RD Sharma Solutions for Class 8 Maths Exercise 6.5 of Chapter 6 Algebraic Expressions and Identities which are provided here. BYJU’S experts have designed solutions to help students secure good marks in their exams by practising the RD Sharma Solutions thoroughly. The PDFs can be downloaded easily from the links given below. In Exercise 6.5 of Chapter 6, Algebraic Expressions and Identities, we will discuss problems based on the multiplication of two binomials.
RD Sharma Solutions for Class 8 Maths Exercise 6.5 Chapter 6 Algebraic Expressions and Identities
Access Answers to RD Sharma Solutions for Class 8 Maths Exercise 6.5 Chapter 6 Algebraic Expressions and Identities
EXERCISE 6.5 PAGE NO: 6.30
Multiply:
1. (5x + 3) by (7x + 2)
Solution:
Now, let us simplify the given expression
(5x + 3) × (7x + 2)
5x (7x + 2) + 3 (7x + 2)
35x2 + 10x + 21x + 6
35x2 + 31x + 6
2. (2x + 8) by (x – 3)
Solution:
Now, let us simplify the given expression
(2x + 8) × (x – 3)
2x (x – 3) + 8 (x – 3)
2x2 – 6x + 8x – 24
2x2 + 2x – 24
3. (7x + y) by (x + 5y)
Solution:
Now, let us simplify the given expression
(7x + y) × (x + 5y)
7x (x + 5y) + y (x + 5y)
7x2 + 35xy + xy + 5y2
7x2 + 36xy + 5y2
4. (a – 1) by (0.1a2 + 3)
Solution:
Now, let us simplify the given expression
(a – 1) × (0.1a2 + 3)
a (0.1a2 + 3) -1 (0.1a2 + 3)
0.1a3 + 3a – 0.1a2 – 3
0.1a3 – 0.1a2 + 3a – 3
5. (3x2 + y2) by (2x2 + 3y2)
Solution:
Now, let us simplify the given expression
(3x2 + y2) × (2x2 + 3 y2)
3x2 × (2x2 + 3y2) + y2 × (2x2 + 3y2)
6x4 + 9x2y2 + 2x2y2 + 3y4
6x4 + 11x2y2 + 3y4
6. (3/5x + 1/2y) by (5/6x + 4y)
Solution:
Now, let us simplify the given expression
(3/5x + 1/2y) × (5/6x + 4y)
3/5x × (5/6x + 4y) + 1/2y × (5/6x + 4y)
15/30x2 + 12/5xy + 5/12xy + 4/2y2
1/2x2 + 169/60xy + 2y2
7. (x6 – y6) by (x2 + y2)
Solution:
Now, let us simplify the given expression
(x6 – y6) × (x2 + y2)
x6 × (x2 + y2) – y6 × (x2 + y2)
x8 + x6y2 – x2y6 – y8
8. (x2 + y2) by (3a + 2b)
Solution:
Now, let us simplify the given expression
(x2 + y2) × (3a + 2b)
x2 × (3a + 2b) + y2 × (3a + 2b)
3ax2 + 3ay2 + 2bx2 + 2by2
9. (- 3d – 7f) by (5d + f)
Solution:
Now, let us simplify the given expression
(- 3d – 7f) × (5d + f)
-3d (5d + f) – 7f (5d + f)
– 15d2 – 3df – 35df – 7f2
– 15d2 – 38df – 7f2
10. (0.8a – o.5b) by (1.5a – 3b)
Solution:
Now, let us simplify the given expression
(0.8a – 0.5b) × (1.5a – 3b)
0.8a (1.5a – 3b) – 0.5b (1.5a – 3b)
1.2a2 – 2.4ab – 0.75ab + 1.5b2
1.2a2 – 3.15ab + 1.5b2
11. (2x2y2 – 5xy2) by (x2 – y2)
Solution:
Now, let us simplify the given expression
(2x2y2 – 5xy2) × (x2 – y2)
2x2y2 (x2 – y2) – 5xy2 (x2 – y2)
2x4y2 – 5x3y2 – 2x2y4 + 5xy4
12. (x/7 + x2/2) by (2/5 + 9x/4)
Solution:
Now, let us simplify the given expression
(x/7 + x2/2) × (2/5 + 9x/4)
x/7 (2/5 + 9x/4) + x2/2 (2/5 + 9x/4)
2x/35 + (9 x2)/28 + x2/5 + (9 x3)/8
9/8x3 + 73/140x2 + 2/35x
13. (-a/7 + a2/9) by (b/2 – b2/3)
Solution:
Now, let us simplify the given expression
(-a/7 + a2/9) × (b/2 – b2/3)
-a/7 (b/2 – b2/3) + a2/9 (b/2 – b2/3)
-ab/14 + ab2/21 + a2b/18 – a2b2/27
14. (3x2y – 5xy2) by (1/5x2 + 1/3y2)
Solution:
Now, let us simplify the given expression
(3x2y – 5xy2) × (1/5x2 + 1/3y2)
3x2y (1/5x2 + 1/3y2) – 5xy2 (1/5x2 + 1/3y2)
3/5x4y + 3/3x2y3 – x3y2 + 5/3xy4
3/5x4y + x2y3 – x3y2 + 5/3xy4
15. (2x2 – 1) by (4x3 + 5x2)
Solution:
Now, let us simplify the given expression
(2x2 – 1) × (4x3 + 5x2)
2x2 (4x3 + 5x2) – 1 (4x3 + 5x2)
8x5 + 10x4 – 4x3 – 5x2
16. (2xy + 3y2) by (3y2 – 2)
Solution:
Now, let us simplify the given expression
(2xy + 3y2) × (3y2 – 2)
2xy (3y2 – 2) + 3y2 (3y2 – 2)
6xy3 – 4xy + 9y4 – 6y2
Find the following products and verify the results for x = -1, y = -2:
17. (3x – 5y) (x + y)
Solution:
Now, let us simplify the given expression
(3x – 5y) × (x + y)
(3x – 5y) × (x + y)
x (3x – 5y) + y (3x – 5y)
3x2 – 5xy + 3xy – 5y2
3x2 – 2xy – 5y2
Let us substitute the given values x = – 1 and y = – 2, then
(3x – 5y) × (x + y)
[3 (-1) – 5 (-2)] × [(-1) + (-2)](-3+10) × (-1-2)
7×-3
-21
3x2 – 2xy – 5y2
3 (-1)2 – 2 (-1) (-2) – 5 (-2)2
3 – 4 – 20
– 21
∴ the given expression is verified.
18. (x2y – 1) (3 – 2x2y)
Solution:
Now, let us simplify the given expression
(x2y – 1) × (3 – 2x2y)
x2y (3 – 2x2y) – 1 (3 – 2x2y)
3x2y – 2x4y2 – 3 + 2x2y
5x2y – 2x4y2 – 3
Let us substitute the given values x = – 1 and y = – 2, then
(x2y – 1) × (3 – 2x2y)
[(-1)2 (-2) – 1] × [3 – 2 (-1)2 (-2)(-2 – 1) × (3 + 4)
-3 × 7
-21
5x2y – 2x4y2 – 3
[-2 (-1)4 (-2)2 + 5 (-1)2 (2) – 3]– 8 – 10 – 3
-21
∴ the given expression is verified.
19. (1/3x – y2/5) (1/3x + y2/5)
Solution:
Now, let us simplify the given expression
(1/3x – y2/5) × (1/3x + y2/5)
(1/3x) 2 – (y2/5)2
(1/3x – y2/5) (1/3x + y2/5)
1/9x2 – 1/25y4
Let us substitute the given values x = – 1 and y = – 2, then
(1/3x – y2/5) × (1/3x + y2/5)
(1/3(-1) – (-2)2/5) × (1/3(-1) + (-2)2/5)
(-17/15) × (7/15)
-119/225
1/9x2 – 1/25y4
1/9 (-1)2 – 1/25 (-2)4
1/9 -16/25
-119/225
∴ the given expression is verified.
Simplify:
20. x2 (x + 2y) (x – 3y)
Solution:
Now, let us simplify the given expression
x2 (x + 2y) (x – 3y)
x2 (x2 – 3xy + 2xy – 3y2)
x2 (x2 – xy – 6y2)
x4 – x3y – 6x2y2
21. (x2 – 2y2) (x + 4y)x2y2
Solution:
Now, let us simplify the given expression
(x2 – 2y2) (x + 4y)x2y2
(x3 + 4x2y – 2xy2 – 8y3) × x2y2
x5y2 + 4x4y3 – 2x3y4 – 8x2y5
22. a2b2 (a + 2b) (3a + b)
Solution:
Now, let us simplify the given expression
a2b2 (a + 2b) (3a + b)
a2b2 (3a2 + ab + 6ab + 2b2)
a2b2 (3a2 + 7ab + 2b2)
3a4b2 + 7a3b3 + 2a2b4
23. x2 (x – y) y2 (x + 2y)
Solution:
Now, let us simplify the given expression
x2 (x – y) y2 (x + 2y)
x2y2 (x2 + 2xy – xy – 2y2)
x2y2 (x2 + xy – 2y2)
x4y2 + x3y3 – 2x2y4
24. (x3 – 2x2 + 5x – 7) (2x – 3)
Solution:
Now, let us simplify the given expression
(x3 – 2x2 + 5x – 7) (2x – 3)
2x4 – 4x3 + 10x2 – 14x – 3x3 + 6x2 – 15x + 21
2x4 – 7x3 + 16x2 – 29x + 21
25. (5x + 3) (x – 1) (3x – 2)
Solution:
Now let us simplify the given expression
(5x + 3) (x – 1) (3x – 2)
(5x2 – 2x – 3) (3x – 2)
15x3 – 6x2 – 9x – 10x2 + 4x + 6
15x3 – 16x2 – 5x + 6
26. (5 – x) (6 – 5x) (2 – x)
Solution:
Now, let us simplify the given expression
(5 – x) (6 – 5x) (2 – x)
(x2 – 7x + 10) (6 – 5x)
-5x3 + 35x2 – 50x + 6x2 – 42x + 60
60 – 92x + 41x2 – 5x3
27. (2x2 + 3x – 5) (3x2 – 5x + 4)
Solution:
Now, let us simplify the given expression
(2x2 + 3x – 5) (3x2 – 5x + 4)
6x4 + 9x3 – 15x2 – 10x3 – 15x2 + 25x + 8x2 + 12x – 20
6x4 – x3 – 22x2 + 37x – 20
28. (3x – 2) (2x – 3) + (5x – 3) (x + 1)
Solution:
Now, let us simplify the given expression
(3x – 2) (2x – 3) + (5x – 3) (x + 1)
6x2 – 9x – 4x + 6 + 5x2 + 5x – 3x – 3
11x2 – 11x + 3
29. (5x – 3) (x + 2) – (2x + 5) (4x – 3)
Solution:
Now, let us simplify the given expression
(5x – 3) (x + 2) – (2x + 5) (4x – 3)
5x2 + 10x – 3x – 6 – 8x2 + 6x – 20x + 15
-3x2 – 7x + 9
30. (3x + 2y) (4x + 3y) – (2x – y) (7x – 3y)
Solution:
Now, let us simplify the given expression
(3x + 2y) (4x + 3y) – (2x – y) (7x – 3y)
12x2 + 9xy + 8xy
12x2 + 9xy + 8xy + 6y2 – 14x2 + 6xy + 7xy – 3y2
-2x2 + 3y2 + 30xy
31. (x2 – 3x + 2) (5x – 2) – (3x2 + 4x – 5) (2x – 1)
Solution:
Now, let us simplify the given expression
(x2 – 3x + 2) (5x – 2) – (3x2 + 4x – 5) (2x – 1)
5x3 – 15x2 + 10x – 2x2 + 6x – 4 – (6x3 + 8x2 – 10x – 3x2 – 4x + 5)
5x3 – 6x3 – 15x2 – 2x2 – 5x2 + 16x + 14x – 4 – 5
– x3 – 22x2 + 30x – 9
32. (x3 – 2x2 + 3x – 4) (x – 1) – (2x – 3) (x2 – x + 1)
Solution:
Now, let us simplify the given expression
(x3 – 2x2 + 3x – 4) (x – 1) – (2x – 3) (x2 – x + 1)
x4 – 2x3 + 3x2 – 4x – x3 + 2x2 – 3x + 4 – (2x3 – 2x2 + 2x – 3x2 + 3x – 3)
x4 – 3x3 + 5x2 – 7x + 4 – 2x3 + 5x2 – 5x + 3
x4 – 5x3 + 10x2 – 12x + 7
Comments