RD Sharma Solutions for Class 12 Maths Chapter 11 – Free PDF Download Updated for (2023-24)
RD Sharma Solutions for Class 12 Maths Chapter 11 – Differentiation PDF is provided here for students to score good marks in the exams. Students can refer to and download Chapter 11 Differentiation from the given links. These RD Sharma Solutions for Class 12 facilitate students to create good knowledge about basic concepts of CBSE Class 12 Mathematics. This chapter is based on the differentiation of a given function.
RD Sharma books offer several questions for practice at the end of each chapter. RD Sharma Solutions for Class 12 provided here are easily readable and created in such a way to help students clear all their doubts that they might face while answering the given problems in exercises. These RD Sharma Solutions are prepared by experts in Maths at BYJU’S.
Some of the primary topics covered in the RD Sharma Solutions of this chapter are listed below.
- Recapitulation of the product rule, quotient rule and differentiation of a constant with an illustration.
- Differentiation of inverse trigonometric functions from first principles.
- Differentiation of a function of a function.
- Differentiation of inverse trigonometric functions by the chain rule.
- Differentiation by using trigonometrical substitutions.
- Differentiation of implicit functions.
- Logarithmic differentiation.
- Differentiation of infinite series.
- Differentiation of parametric functions.
- Differentiation of a function with respect to another function.
- Differentiation of determinants.
RD Sharma Solutions for Class 12 Maths Chapter 11 Differentiation:
Access answers to Maths RD Sharma Solutions For Class 12 Chapter 11 – Differentiation
Exercise 11.1 Page No: 11.17
Differentiate the following functions from the first principles:
1. e-x
Solution:
2. e3x
Solution:
3. eax + b
Solution:
4. ecos x
Solution:
We have to find the derivative of ecos x with the first principle method,
So, let f (x) = ecos x
By using the first principle formula, we get,
Solution:
Exercise 11.2 Page No: 11.37
Differentiate the following functions with respect to x:
1. Sin (3x + 5)
Solution:
Given Sin (3x + 5)
2. tan2 x
Solution:
Given tan2 x
3. tan (xo + 45o)
Solution:
Let y = tan (x° + 45°)
First, we will convert the angle from degrees to radians.
4. Sin (log x)
Solution:
Given sin (log x)
Solution:
6. etan x
Solution:
7. Sin2 (2x + 1)
Solution:
Let y = sin2 (2x + 1)
On differentiating y with respect to x, we get
8. log7 (2x – 3)
Solution:
9. tan 5xo
Solution:
Let y = tan (5x°)
First, we will convert the angle from degrees to radians. We have
Solution:
Solution:
12. logx 3
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
18. (log sin x)2
Solution:
Let y = (log sin x)2
Solution:
Solution:
21. e3x cos 2x
Solution:
22. Sin (log sin x)
Solution:
23. etan 3x
Solution:
Solution:
Solution:
Solution:
27. tan (esin x)
Solution:
Solution:
Solution:
30. log (cosec x – cot x)
Solution:
Solution:
Solution:
33. tan-1 (ex)
Solution:
Solution:
35. sin (2 sin-1 x)
Solution:
Let y = sin (2sin–1x)
On differentiating y with respect to x, we get
Solution:
Solution:
Exercise 11.3 Page No: 11.62
Differentiate the following functions with respect to x:
Solution:
Solution:
Solution:
Let,
Solution:
Let,
Solution:
Solution:
7. Sin-1 (2x2 – 1), 0 < x < 1
Solution:
8. Sin-1 (1 – 2x2), 0 < x < 1
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Let,
Solution:
Solution:
Solution:
Solution:
Exercise 11.4 Page No: 11.74
Find dy/dx in each of the following:
1. xy = c2
Solution:
2. y3 – 3xy2 = x3 + 3x2y
Solution:
Given y3 – 3xy2 = x3 + 3x2y,
Now we have to find dy/dx of given equation, so by differentiating the equation on both sides with respect to x, we get,
3. x2/3 + y2/3 = a2/3
Solution:
Given x2/3 + y2/3 = a2/3,
Now we have to find dy/dx of given equation, so by differentiating the equation on both sides with respect to x, we get,
4. 4x + 3y = log (4x – 3y)
Solution:
Given 4x + 3y = log (4x – 3y),
Now we have to find dy/dx of it, so by differentiating the equation on both sides with respect to x, we get,
Solution:
6. x5 + y5 = 5xy
Solution:
Given x5 + y5 = 5xy
Now we have to find dy/dx of given equation, so by differentiating the equation on both sides with respect to x, we get,
7. (x + y)2 = 2axy
Solution:
Given (x + y)2 = 2axy
Now we have to find dy/dx of given equation, so by differentiating the equation on both sides with respect to x, we get,
8. (x2 + y2)2 = xy
Solution:
Given (x + y)2 = 2axy
Now we have to find dy/dx of given equation, so by differentiating the equation on both sides with respect to x, we get,
9. Tan-1 (x2 + y2)
Solution:
Given tan – 1(x2 + y2) = a,
Now we have to find dy/dx of given function, so by differentiating the equation on both sides with respect to x, we get,
Solution:
11. Sin xy + cos (x + y) = 1
Solution:
Given Sin x y + cos (x + y) = 1
Now we have to find dy/dx of given function, so by differentiating the equation on both sides with respect to x, we get,
Solution:
Solution:
Solution:
Solution:
Exercise 11.5 Page No: 11.88
Differentiate the following functions with respect to x:
1. x1/x
Solution:
2. xsin x
Solution:
3. (1 + cos x)x
Solution:
Solution:
5. (log x)x
Solution:
6. (log x)cos x
Solution:
Let y = (log x)cos x
Taking log both the sides, we get
7. (Sin x)cos x
Solution:
8. ex log x
Solution:
9. (Sin x)log x
Solution:
10. 10log sin x
Solution:
11. (log x)log x
Solution:
Solution:
13. Sin (xx)
Solution:
14. (Sin-1 x)x
Solution:
Solution:
16. (tan x)1/x
Solution:
Solution:
18. (i) (xx) √x
Solution:
Solution:
Solution:
Solution:
Solution:
18. (vi) esin x + (tan x)x
Solution:
18. (vii) (cos x)x + (sin x)1/x
Solution:
Solution:
19. y = ex + 10x + xx
Solution:
20. y = xn + nx + xx + nn
Solution:
Exercise 11.6 Page No: 11.98
Solution:
Solution:
Solution:
Solution:
Exercise 11.7 Page No: 11.103
Find dy/dx, when
1. x = at2 and y = 2 at
Solution:
2. x = a (θ + sin θ) and y = a (1 – cos θ)
Solution:
3. x = a cos θ and y = b sin θ
Solution:
Given x = a cos θ and y = b sin θ
4. x = a eθ (sin θ – cos θ), y = a eθ (sin θ + cos θ)
Solution:
5. x = b sin2 θ and y = a cos2 θ
Solution:
6. x = a (1 – cos θ) and y = a (θ + sin θ) at θ = π/2
Solution:
Solution:
Solution:
9. x = a (cos θ + θ sin θ) and y = a (sin θ – θ cos θ)
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Exercise 11.8 Page No: 11.112
1. Differentiate x2 with respect to x3.
Solution:
2. Differentiate log (1 +x2) with respect to tan-1 x.
Solution:
3. Differentiate (log x)x with respect to log x.
Solution:
4. Differentiate sin-1 √ (1-x2) with respect to cos-1x, if
(i) x ∈ (0, 1)
(ii) x ∈ (-1, 0)
Solution:
(i) Given sin-1 √ (1-x2)
(ii) Given sin-1 √ (1-x2)
Solution:
(i) Let
(ii) Let
(iii) Let
Solution:
(i) x ∈ (0, 1/ √2)
(ii) x ∈ (1/√2, 1)
Solution:
(i) Let
(ii) Let
8. Differentiate (cos x)sin x with respect to (sin x)cos x.
Solution:
Solution:
Solution:
Also, Access RD Sharma Solutions for Class 12 Maths Chapter 11 Differentiation
Frequently Asked Questions on RD Sharma Solutions for Class 12 Maths Chapter 11
Why are the RD Sharma Solutions for Class 12 Maths Chapter 11 important for the board exam?
What are the advantages of using the BYJU’S RD Sharma Solutions for Class 12 Maths Chapter 11?
1. The information is drafted in an organised way so that students can relate to the concepts efficiently.
2. The solutions are written in an understandable language to help students with their exam preparation.
3. During revision, the RD Sharma Solutions prove to be time-saving for the students.
4. Correct answers based on the latest CBSE syllabus and guidelines.
How can I effectively use the RD Sharma Solutions for Class 12 Maths Chapter 11?
How many exercises are present in Chapter 11 of RD Sharma Solutions for Class 12 Maths?
RD Sharma Solutions for Class 12 Maths Chapter 11 has eight exercises. The experts have designed 100% accurate solutions to each exercise to make learning easy for students. Regular practice of these solutions helps students obtain proficiency in solving complex problems effortlessly. This also boosts skills that are essential to score good marks from an exam point of view.
Why should we practise RD Sharma Solutions for Class 12 Maths Chapter 11 before appearing for the board exams?
In order to secure more marks in exams, students must practise RD Sharma Solutions for Class 12 Maths Chapter 11 thoroughly. Practising on a daily basis enables students to clear their doubts instantly which appear while solving textbook problems. Practice plays a key role in enhancing confidence in solving any type of problem in the exams.
Comments