NCERT exercise solutions help improve the hold of the students in the problems related to square and square roots. Subject experts have solved all the questions of this exercise. NCERT Solutions for Class 8 Maths helps students in enhancing their skills. Download free Maths NCERT Solutions for Chapter 6 of Class 8 and get going with the homework as well as the exam preparation.
Download the PDF of NCERT Solutions for Class 8 Maths Chapter 6 – Squares and Square Roots Exercise 6.4
Access other exercise solutions of Class 8 Maths Chapter 6 – Squares and Square Roots
Exercise 6.1 Solutions 9 Questions
Exercise 6.2 Solutions 2 Questions
Exercise 6.3 Solutions 10 Questions
Access answers of Maths NCERT Class 8 Chapter 6 – Squares and Square Roots Exercise 6.4 Page Number 107
1. Find the square root of each of the following numbers by the Division method.
i. 2304
ii. 4489
iii. 3481
iv. 529
v. 3249
vi. 1369
vii. 5776
viii. 7921
ix. 576
x. 1024
xi. 3136
xii. 900
Solution:
i.
∴ √2304 = 48
ii.
∴ √4489 = 67
iii.
∴ √3481 = 59
iv.
∴ √529 = 23
v.
∴ √3249 = 57
vi.
∴ √1369 = 37
vii.
∴ √5776 = 76
viii.
∴ √7921 = 89
ix.
∴ √576 = 24
x.
∴ √1024 = 32
xi.
∴ √3136 = 56
xii.
∴ √900 = 30
2. Find the number of digits in the square root of each of the following numbers (without any
calculation).
i. 144
ii. 4489
iii. 27225
iv. 390625
Solution:
i.
∴ √144 = 12
Hence, the square root of the number 144 has 2 digits.
ii.
∴ √4489 = 67
Hence, the square root of the number 4489 has 2 digits.
iii.
√27225 = 165
Hence, the square root of the number 27225 has 3 digits.
iv.
∴ √390625 = 625
Hence, the square root of the number 390625 has 3 digits.
3. Find the square root of the following decimal numbers.
i. 2.56
ii. 7.29
iii. 51.84
iv. 42.25
v. 31.36
Solution:
i.
∴ √2.56 = 1.6
ii.
∴ √7.29 = 2.7
iii.
∴ √51.84 = 7.2
iv.
∴ √42.25 = 6.5
v.
∴ √31.36 = 5.6
4. Find the least number which must be subtracted from each of the following numbers to get a perfect square. Also, find the square root of the perfect square so obtained.
i. 402
ii. 1989
iii. 3250
iv. 825
v. 4000
Solution:
i.
∴ √402 = 20
∴ we must subtract 2 from 402 to get a perfect square.
New number = 402 – 2 = 400
∴ √400 = 20
ii.
∴ We must subtract 53 from 1989 to get a perfect square. New number = 1989 – 53 = 1936
∴ √1936 = 44
iii.
∴ We must subtract 1 from 3250 to get a perfect square.
New number = 3250 – 1 = 3249
∴ √3249 = 57
iv.
We must subtract 41 from 825 to get a perfect square.
New number = 825 – 41 = 784
∴ √784 = 28
∴ we must subtract 31 from 4000 to get a perfect square. New number = 4000 – 31 = 3969
∴ √3969 = 63
5. Find the least number which must be added to each of the following numbers to get a perfect square. Also, find the square root of the perfect square so obtained.
(i) 525
(ii) 1750
(iii) 252
(iv)1825
(v)6412
Solution:
(i)
Here, (22)2 < 525 > (23)2
We can say 525 is ( 129 – 125 ) 4 less than (23)2.
∴ if we add 4 to 525, it will be a perfect square. New number = 525 + 4 = 529
∴ √529 = 23
(ii)
Here, (41)2 < 1750 > (42)2
We can say 1750 is ( 164 – 150 ) 14 less than (42)2.
∴ If we add 14 to 1750, it will be a perfect square.
New number = 1750 + 14 = 1764
∴√1764 = 42
(iii)
Here, (15)2 < 252 > (16)2
We can say 252 is ( 156 – 152 ) 4 less than (16)2.
∴ if we add 4 to 252, it will be a perfect square.
New number = 252 + 4 = 256
∴ √256 = 16
(iv)
Here, (42)2 < 1825 > (43)2
We can say 1825 is ( 249 – 225 ) 24 less than (43)2.
∴ if we add 24 to 1825, it will be a perfect square.
New number = 1825 + 24 = 1849
∴ √1849 = 43
(v)
Here, (80)2 < 6412 > (81)2
We can say 6412 is ( 161 – 12 ) 149 less than (81)2.
∴ if we add 149 to 6412, it will be a perfect square.
New number = 6412 + 149 = 656
∴ √6561 = 81
6. Find the length of the side of a square whose area is 441 m2.
Solution:
Let the length of each side of the field = a Then, the area of the field = 441 m2
⇒ a2 = 441 m2
⇒a = √441 m
∴ The length of each side of the field = a m = 21 m.
7. In a right triangle ABC, ∠B = 90°.
a. If AB = 6 cm, BC = 8 cm, find AC
b. If AC = 13 cm, BC = 5 cm, find AB
Solution:
a.
Given, AB = 6 cm, BC = 8 cm
Let AC be x cm.
∴ AC2 = AB2 + BC2
Hence, AC = 10 cm.
b.
Given, AC = 13 cm, BC = 5 cm
Let AB be x cm.
∴ AC2 = AB2 + BC2
⇒ AC2 – BC2 = AB2
Hence, AB = 12 cm
8. A gardener has 1000 plants. He wants to plant these in such a way that the number of rows
and the number of columns remains the same. Find the minimum number of plants he needs for this.
Solution:
Let the number of rows and columns be x.
∴ The total number of rows and columns= x× x = x2 As per the question, x2 = 1000
⇒ x = √1000
Here, (31)2 < 1000 > (32)2
We can say 1000 is ( 124 – 100 ) 24 less than (32)2.
∴ 24 more plants are needed.
9. There are 500 children in a school. For a P.T. drill, they have to stand so that the number of rows is equal to the number of columns. How many children would be left out in this arrangement?
Solution:
Let the number of rows and columns be x.
∴ The total number of rows and columns = x × x = x2 As per question, x2 = 500
x = √500
Hence, 16 children would be left out of the arrangement.
Exercise 6.4 of NCERT Solutions for Class 8 Maths Chapter 6 – Squares and Square Roots is based on the following topics:
- Finding the square root by division method
- Square Roots of Decimals
- Estimating Square Root
Also, explore –Â
I like byjus very much. And the study method of byjus is amazing
Good morning
It is good seeing the advanced learning method with byjus