# NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities

## NCERT Solutions for Class 8 Maths Chapter 9 – Free PDF Download

NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities have been provided by subject experts at BYJU’S. Are you stuck with the Class 8 Maths NCERT textbook question? Need help in preparing for an exam in a particular concept? The NCERT Solutions for Class 8 Maths will help you do both and much more.

BYJU’S NCERT Solutions for Class 8 Maths provide detailed solutions to all questions covered in Chapter 9 Algebraic Expressions and Identities. Our experienced academicians provide detailed and step-by-step solutions for all the questions in the subject of Maths from the NCERT textbook. Download the free Class 8 Maths NCERT Solutions and get going with your homework as well as exam preparations.

## Exercise 9.1 Page No: 140

Q1. Identify the terms, their coefficients for each of the following expressions. (i) 5xyz2 – 3zy (ii) 1 + x + x2(iii) 4x2y2 – 4x2y2z2 + z2 (iv) 3 – pq + qr – p (v) (x/2) + (y/2) – xy (vi) 0.3a – 0.6ab + 0.5b

Solution :

 Sl. No. Expression Term Coefficient i) 5xyz2 – 3zy Term: 5xyz2Term: -3zy 5 -3 ii) 1 + x + x2 Term: 1 Term: xTerm: x2 1 1 1 iii) 4x2y2 – 4x2y2z2 + z2 Term: 4x2y2 Term: -4 x2y2z2Term :  z2 4 -4 1 iv) 3 – pq + qr – p Term : 3 -pq qr -p 3 -1 1 -1 v) (x/2) + (y/2) – xy Term : x/2 Y/2 -xy ½ 1/2 -1 vi) 0.3a – 0.6ab + 0.5b Term : 0.3a -0.6ab 0.5b 0.3 -0.6 0.5

2. Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these three categories?x + y, 1000, x + x2 + x3 + x4 , 7 + y + 5x, 2y – 3y2 , 2y – 3y2 + 4y3 , 5x – 4y + 3xy, 4z – 15z2 , ab + bc + cd + da, pqr, p2q + pq2 , 2p + 2q

Solution:

Let us first define the classifications of these 3 polynomials:

Monomials, Contain only one term.

Binomials, Contain only two terms.

Trinomials, Contain only three terms.

 x + y two terms Binomial 1000 one term Monomial x + x2 + x3 + x4 four terms Polynomial, and it does not fit in listed three categories 2y – 3y2 two terms Binomial 2y – 3y2 + 4y3 three terms Trinomial 5x – 4y + 3xy three terms Trinomial 4z – 15z2 two terms Binomial ab + bc + cd + da four terms Polynomial, and it does not fit in listed three categories pqr one term Monomial p2q + pq2 two terms Binomial 2p + 2q two terms Binomial 7 + y + 5x three terms Trinomial

(i) ab – bc, bc – ca, ca – ab

(ii) a – b + ab, b – c + bc, c – a + ac

(iii) 2p2q2 – 3pq + 4, 5 + 7pq – 3p2q2

(iv) l2 + m2, m2 + n2, n2 + l2, 2lm + 2mn + 2nl

Solution:

i) (ab – bc) + (bc – ca) + (ca-ab)

= ab – bc + bc – ca + ca – ab

= ab – ab – bc + bc – ca + ca

= 0

ii) (a – b + ab) + (b – c + bc) + (c – a + ac)

= a – b + ab + b – c + bc + c – a + ac

= a – a +b – b +c – c + ab + bc + ca

= 0 + 0 + 0 + ab + bc + ca

= ab + bc + ca

iii) 2p2q2 – 3pq + 4, 5 + 7pq – 3p2q2

= (2p2q2 – 3pq + 4) + (5 + 7pq – 3p2q2)

= 2p2q2 – 3p2q2 – 3pq + 7pq + 4 + 5

= – p2q2 + 4pq + 9

iv)(l2 + m2) + (m2 + n2) + (n2 + l2) + (2lm + 2mn + 2nl)

= l2 + l2 + m2 + m2 + n2 + n2 + 2lm + 2mn + 2nl

= 2l2 + 2m2 + 2n2 + 2lm + 2mn + 2nl

4. (a) Subtract 4a – 7ab + 3b + 12 from 12a – 9ab + 5b – 3

(b) Subtract 3xy + 5yz – 7zx from 5xy – 2yz – 2zx + 10xyz

(c) Subtract 4p2q – 3pq + 5pq2 – 8p + 7q – 10 from 18 – 3p – 11q + 5pq – 2pq2 + 5p2q

Solution:

(a) (12a – 9ab + 5b – 3) – (4a – 7ab + 3b + 12)

= 12a – 9ab + 5b – 3 – 4a + 7ab – 3b – 12

= 12a – 4a -9ab + 7ab +5b – 3b -3 -12

= 8a – 2ab + 2b – 15

b) (5xy – 2yz – 2zx + 10xyz) – (3xy + 5yz – 7zx)

= 5xy – 2yz – 2zx + 10xyz – 3xy – 5yz + 7zx

=5xy – 3xy – 2yz – 5yz – 2zx + 7zx + 10xyz

= 2xy – 7yz + 5zx + 10xyz

c) (18 – 3p – 11q + 5pq – 2pq2 + 5p2q) – (4p2q – 3pq + 5pq2 – 8p + 7q – 10)

= 18 – 3p – 11q + 5pq – 2pq2 + 5p2q – 4p2q + 3pq – 5pq2 + 8p – 7q + 10

=18+10 -3p+8p -11q – 7q + 5 pq+ 3pq- 2pq^2 – 5pq^2 + 5 p^2 q – 4p^2 q

= 28 + 5p – 18q + 8pq – 7pq2 + p2q

## Exercise 9.2 Page No: 143

1. Find the product of the following pairs of monomials.

(i) 4, 7p

(ii) – 4p, 7p

(iii) – 4p, 7pq

(iv)  4p3, – 3p

(v) 4p, 0

Solution:

(i) 4 , 7 p =  4 × 7 × p = 28p

(ii) – 4p × 7p = (-4 × 7 ) × (p × p )= -28p2

(iii) – 4p × 7pq =(-4 × 7 ) (p × pq) =  -28p2q

(iv) 4p3 × – 3p = (4 × -3 ) (p3 × p ) =  -12p4

(v) 4p ×  0 = 0

2. Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively.

(p, q) ; (10m, 5n) ; (20x2 , 5y2) ; (4x, 3x2) ; (3mn, 4np)

Solution:

Area of rectangle = Length x breadth. So, it is multiplication of two monomials.

The results can be written in square units.

(i) p × q = pq

(ii)10m ×  5n = 50mn

(iii) 20x2 ×  5y2 =  100x2y2

(iv) 4x × 3x2 = 12x3

(v) 3mn ×  4np = 12mn2p

3. Complete the following table of products:

Solution:

4. Obtain the volume of rectangular boxes with the following length, breadth and height respectively.

(i) 5a, 3a2, 7a4

(ii) 2p, 4q, 8r

(iii) xy, 2x2y, 2xy2

(iv) a, 2b, 3c

Solution:

Volume of rectangle = length x  breadth x  height. To evaluate volume of rectangular boxes, multiply all the monomials.

(i) 5a x 3a2 x 7a4 = (5 × 3 × 7) (a × a2 × a4 ) = 105a7

(ii) 2p x 4q x 8r = (2 × 4 × 8 ) (p × q × r ) = 64pqr

(iii) y × 2x2y × 2xy2 =(1 × 2 × 2 )( x × x2 × x × y × y × y2 ) =  4x4y4

(iv) a x  2b x 3c = (1 × 2 × 3 ) (a × b × c) = 6abc

5. Obtain the product of

(i) xy,  yz, zx

(ii) a, – a2 , a3

(iii) 2, 4y, 8y2 , 16y3

(iv) a, 2b, 3c, 6abc

(v) m, – mn, mnp

Solution:

(i) xy × yz × zx = x2 y2 z2

(ii) a × – a2  × a3 = – a6

(iii) 2 × 4y × 8y2 × 16y3 = 1024 y6

(iv) a × 2b × 3c × 6abc = 36a2 b2 c2

(v) m × – mn × mnp = –m3 n2 p

## Exercise 9.3 Page No: 146

1. Carry out the multiplication of the expressions in each of the following pairs.

(i) 4p, q + r

(ii) ab, a – b

(iii) a + b, 7a²b²

(iv) a2 – 9, 4a

(v) pq + qr + rp, 0

Solution:

(i)4p(q + r) = 4pq + 4pr

(ii)ab(a – b) = a2 b – a b2

(iii)(a + b) (7a2b2) = 7a3b2 + 7a2b3

(iv) (a2 – 9)(4a) = 4a3 – 36a

(v) (pq + qr + rp) × 0 = 0 ( Anything multiplied by zero is zero )

2. Complete the table.

Solution:

 First expression Second expression Product (i) a b + c + d a(b+c+d) = a×b + a×c + a×d = ab + ac + ad (ii) x + y – 5 5xy 5 xy (x + y – 5) = 5 xy x x + 5 xy x y – 5 xy x 5 = 5 x2y + 5 xy2 – 25xy (iii) p 6p2 – 7p + 5 p (6 p 2-7 p +5) = p× 6 p2 – p× 7 p + p×5 = 6 p3 – 7 p2 + 5 p (iv) 4 p2 q2 P2 – q2 4p2 q2 * (p2 – q2 ) =4 p4 q2– 4p2 q4 (v) a + b + c abc abc(a + b + c) = abc × a + abc × b + abc × c = a2bc + ab2c + abc2

3. Find the product.

i) a2 x (2a22) x (4a26)

ii) (2/3 xy) ×(-9/10 x2y2)

(iii) (-10/3 pq3/) × (6/5 p3q)

(iv) (x) × (x2) × (x3) × (x4)

Solution:

i) a2 x (2a22) x (4a26)

= (2 × 4) ( a2 × a22 × a26 )

= 8 × a2 + 22 + 26

= 8a50

ii) (2xy/3) ×(-9x2y2/10)

=(2/3 × -9/10 ) ( x × x2 × y × y2 )

= (-3/5 x3y3)

iii) (-10pq3/3) ×(6p3q/5)

= ( -10/3 × 6/5 ) (p × p3× q3 × q)

= (-4p4q4)

iv)  ( x) x (x2) x (x3) x (x4)

= x 1 + 2 + 3 + 4

=  x10

4. (a) Simplify 3x (4x – 5) + 3 and find its values for (i) x = 3 (ii) x =1/2

(b) Simplify a (a2+ a + 1) + 5 and find its value for (i) a = 0, (ii) a = 1 (iii) a = – 1.

Solution:

a) 3x (4x – 5) + 3

=3x ( 4x) – 3x( 5) +3

=12x2 – 15x + 3

(i) Putting x=3 in the equation we gets 12x2 – 15x + 3 =12(32) – 15 (3) +3

= 108 – 45 + 3

= 66

(ii) Putting x=1/2 in the equation we get

12x2 – 15x + 3 = 12 (1/2)2 – 15 (1/2) + 3

= 12 (1/4) – 15/2 +3

= 3 – 15/2 + 3

= 6- 15/2

= (12- 15 ) /2

= -3/2

b) a(a2 +a +1)+5

= a x a2 + a x a + a x 1 + 5 =a3+a2+a+ 5

(i) putting a=0 in the equation we get 03+02+0+5=5

(ii) putting a=1 in the equation we get 1+ 1+ 1+5 = 1 + 1 + 1+5 = 8

(iii) Putting a = -1 in the equation we get (-1)3+(-1)+ (-1)+5 = -1 + 1 – 1+5 = 4

5. (a) Add: p ( p – q), q ( q – r) and r ( r – p)

(b) Add: 2x (z – x – y) and 2y (z – y – x)

(c) Subtract: 3l (l – 4 m + 5 n) from 4l ( 10 n – 3 m + 2 l )

(d) Subtract: 3a (a + b + c ) – 2 b (a – b + c)  from 4c ( – a + b + c )

Solution:

a) p ( p – q) + q ( q – r) + r ( r – p)

= (p2 – pq) + (q2 – qr) + (r2 – pr)

= p2 + q2 + r2 – pq – qr – pr

b) 2x (z – x – y) + 2y (z – y – x)

= (2xz – 2x2 – 2xy) + (2yz – 2y2 – 2xy)

= 2xz – 4xy + 2yz – 2x2 – 2y2

c) 4l ( 10 n – 3 m + 2 l ) – 3l (l – 4 m + 5 n)

= (40ln – 12lm + 8l2) – (3l2 – 12lm + 15ln)

= 40ln – 12lm + 8l2 – 3l2 +12lm -15 ln

= 25 ln + 5l2

d) 4c ( – a + b + c ) – (3a (a + b + c ) – 2 b (a – b + c))

= (-4ac + 4bc + 4c2) – (3a2 + 3ab + 3ac – ( 2ab – 2b2 + 2bc ))

=-4ac + 4bc + 4c2 – (3a2 + 3ab + 3ac – 2ab + 2b2 – 2bc)

= -4ac + 4bc + 4c2 – 3a2 – 3ab – 3ac +2ab – 2b2 + 2bc

= -7ac + 6bc + 4c2 – 3a2 – ab – 2b2

## Exercise 9.4 Page No: 148

1. Multiply the binomials.

(i) (2x + 5) and (4x – 3)

(ii) (y – 8) and (3y – 4)

(iii) (2.5l – 0.5m) and (2.5l + 0.5m)

(iv) (a + 3b) and (x + 5)

(v) (2pq + 3q2) and (3pq – 2q2)

(vi) (3/4 a2 + 3b2) and 4( a2 – 2/3 b2)

Solution :

(i) (2x + 5)(4x – 3)

2x x 4x – 2x x 3 + 5 x 4x – 5 x 3

8x² – 6x + 20x -15

8x² + 14x -15

ii) ( y – 8)(3y – 4)

= y x 3y – 4y – 8 x 3y + 32

= 3y2 – 4y – 24y + 32

= 3y2 – 28y + 32

(iii) (2.5l – 0.5m)(2.5l + 0.5m)

= 2.5l x 2.5 l + 2.5l x 0.5m – 0.5m x 2.5l – 0.5m x 0.5m

= 6.25l2 + 1.25 lm – 1.25 lm – 0.25 m2

= 6.25l2– 0.25 m2

iv) (a + 3b) (x + 5)

= ax + 5a + 3bx + 15b

v) (2pq + 3q2(3pq – 2q2)

= 2pq x 3pq – 2pq x 2q2 + 3q2 x 3pq – 3q2 x 2q2

= 6p2q2 – 4pq3 + 9pq3 – 6q4

= 6p2q2 + 5pq3 – 6q4

(vi) (3/4 a² + 3b² ) and 4( a² – 2/3 b² )

=(3/4 a² + 3b² ) x 4( a² – 2/3 b² )

=(3/4 a² + 3b² ) x (4a² – 8/3 b² )

=3/4 a² x (4a² – 8/3 b² ) + 3b² x (4a² – 8/3 b² )

=3/4 a² x 4a² -3/4 a² x 8/3 b² + 3b² x 4a² – 3b² x 8/3 b²

=3a4 – 2a² b² + 12 a²  b² – 8b4

= 3a4 + 10a²  b² – 8b4

2. Find the product.

(i) (5 – 2x) (3 + x)

(ii) (x + 7y) (7x – y)

(iii) (a2+ b) (a + b2)

(iv) (p2 – q2) (2p + q)

Solution:

(i) (5 – 2x) (3 + x)

= 5 (3 + x) – 2x (3 + x)

=15 + 5x – 6x – 2x2

= 15 – x -2 x 2

(ii) (x + 7y) (7x – y)

= x(7x-y) + 7y ( 7x-y)

=7x2 – xy + 49xy – 7y2

= 7x2 – 7y2 + 48xy

iii) (a2+ b) (a + b2)

= a2  (a + b2) + b(a + b2)

= a3 + a2b2 + ab + b3

= a3 + b3 + a2b2 + ab

iv) (p2– q2) (2p + q)

= p2 (2p + q) – q2 (2p + q)

=2p3 + p2q – 2pq2 – q3

= 2p3 – q3 + p2q – 2pq2

3. Simplify.

(i) (x2– 5) (x + 5) + 25

(ii) (a2+ 5) (b3+ 3) + 5

(iii)(t + s2)(t2 – s)

(iv) (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)

(v) (x + y)(2x + y) + (x + 2y)(x – y)

(vi) (x + y)(x2– xy + y2)

(vii) (1.5x – 4y)(1.5x + 4y + 3) – 4.5x + 12y

(viii) (a + b + c)(a + b – c)

Solution :

i) (x2– 5) (x + 5) + 25

= x3 + 5x2 – 5x – 25 + 25

= x3 + 5x2 – 5x

ii) (a2+ 5) (b3+ 3) + 5

= a2b3 + 3a2 + 5b3 + 15 + 5

= a2b3 + 5b3 + 3a2 + 20

iii) (t + s2)(t2 – s)

= t (t2 – s) + s2(t2 – s)

= t3 – st + s2t2 – s3

= t3 – s3 – st + s2t2

iv) (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)

= (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)

=(ac – ad + bc – bd) + (ac + ad – bc – bd) + (2ac + 2bd)

= ac – ad + bc – bd + ac + ad – bc – bd + 2ac + 2bd

= 4ac

v) (x + y)(2x + y) + (x + 2y)(x – y)

= 2x2 + xy + 2xy + y2 + x2 – xy + 2xy – 2y2

= 3x2 + 4xy – y2

vi) (x + y)(x2– xy + y2)

= x3 – x2y + xy2 + x2y – xy2 + y3

= x3 + y3

vii) (1.5x – 4y)(1.5x + 4y + 3) – 4.5x + 12y

= 2.25x2 + 6xy + 4.5x – 6xy – 16y2 – 12y – 4.5x + 12y = 2.25x2 – 16y2

viii) (a + b + c)(a + b – c)

= a2 + ab – ac + ab + b2 – bc + ac + bc – c2

= a2 + b2 – c2 + 2ab

## Exercise 9.5 Page No: 151

1. Use a suitable identity to get each of the following products.

(i) (x + 3) (x + 3)

(ii) (2y + 5) (2y + 5)

(iii) (2a – 7) (2a – 7)

(iv) (3a – 1/2)(3a – 1/2)

(v) (1.1m – 0.4) (1.1m + 0.4)

(vi) (a2+ b2) (- a2+ b2)

(vii) (6x – 7) (6x + 7)

(viii) (- a + c) (- a + c)

(ix) (1/2x + 3/4y) (1/2x + 3/4y)

(x) (7a – 9b) (7a – 9b)

Solution:

(i) (x + 3) (x + 3) = (x + 3)2

= x2 + 6x + 9

Using (a+b) 2 = a2 + b2 + 2ab

ii) (2y + 5) (2y + 5) = (2y + 5)2

= 4y2 + 20y + 25

Using (a+b) 2 = a2 + b2 + 2ab

iii) (2a – 7) (2a – 7) = (2a – 7)2

= 4a2 – 28a + 49

Using (a-b)= a2 + b2 – 2ab

iv) (3a – 1/2)(3a – 1/2) = (3a – 1/2)2

=  9a2 -3a+(1/4)

Using (a-b) 2  = a2 + b2 – 2ab

v)   (1.1m – 0.4) (1.1m + 0.4)

= 1.21m2 – 0.16

Using (a – b)(a + b) = a2 – b2

vi) (a2+ b2) (– a2+ b2)

= (b2 + a2 ) (b2 – a2)

= -a4 + b4

Using (a – b)(a + b) = a2 – b2

vii) (6x – 7) (6x + 7)

=36x2 – 49

Using (a – b)(a + b) = a2 – b2

viii) (– a + c) (– a + c) = (– a + c)2

= c2 + a2 – 2ac

Using (a-b) 2 = a2 + b2 – 2ab

= (x2/4) + (9y2/16) + (3xy/4)

Using (a+b) 2 = a2 + b2 + 2ab

x) (7a – 9b) (7a – 9b) = (7a – 9b)2

= 49a2 – 126ab + 81b2

Using (a-b) 2 = a2 + b2 – 2ab

2. Use the identity (x + a) (x + b) = x+ (a + b) x + ab to find the following products.

(i) (x + 3) (x + 7)

(ii) (4x + 5) (4x + 1)

(iii) (4x – 5) (4x – 1)

(iv) (4x + 5) (4x – 1)

(v) (2x + 5y) (2x + 3y)

(vi) (2a2 + 9) (2a2 + 5)

(vii) (xyz – 4) (xyz – 2)

Solution:

(i)(x + 3) (x + 7)

= x2 + (3+7)x + 21

= x2 + 10x + 21

ii) (4x + 5) (4x + 1)

= 16x2 + 4x + 20x + 5

= 16x2 + 24x + 5

iii) (4x – 5) (4x – 1)

= 16x2 – 4x – 20x + 5

= 16x2 – 24x + 5

iv) (4x + 5) (4x – 1)

= 16x2 + (5-1)4x – 5

= 16x2 +16x – 5

v) (2x + 5y) (2x + 3y)

= 4x2 + (5y + 3y)2x + 15y2

= 4x2 + 16xy + 15y2

vi) (2a2+ 9) (2a2+ 5)

= 4a4 + (9+5)2a2 + 45

= 4a4 + 28a2 + 45

vii) (xyz – 4) (xyz – 2)

= x2y2z2 + (-4 -2)xyz + 8

= x2y2z2 – 6xyz + 8

3. Find the following squares by using the identities.

(i) (b – 7)2

(ii) (xy + 3z)2

(iii) (6x2 – 5y)2

(iv) [(2m/3) + (3n/2)]2

(v) (0.4p – 0.5q)2

(vi) (2xy + 5y)2

Solution:

Using identities:

(a – b) 2 = a2 + b2 – 2ab (a + b) 2 = a2 + b2 + 2ab

(i) (b – 7)2 = b2 – 14b + 49

(ii) (xy + 3z)2 = x2y2 + 6xyz + 9z2

(iii) (6x2 – 5y)2 = 36x4 – 60x2y + 25y2

(iv) [(2m/3}) + (3n/2)]2 = (4m2/9) +(9n2/4) + 2mn

(v) (0.4p – 0.5q)2 = 0.16p2 – 0.4pq + 0.25q2

(vi) (2xy + 5y)2 = 4x2y2 + 20xy2 + 25y2

4. Simplify.

(i) (a2 – b2)2

(ii) (2x + 5) – (2x – 5)2

(iii) (7m – 8n)2 + (7m + 8n)2

(iv) (4m + 5n)+ (5m + 4n)2

(v) (2.5p – 1.5q)– (1.5p – 2.5q)2

(vi) (ab + bc)2– 2ab²c

(vii) (m– n2m)+ 2m3n2

Solution:

i) (a2– b2)2 = a4 + b4 – 2a2b2

ii) (2x + 5) – (2x – 5)2
= 4x2 + 20x + 25 – (4x2 – 20x + 25) = 4x2 + 20x + 25 – 4x2 + 20x – 25 = 40x

iii) (7m – 8n)2 + (7m + 8n)2
= 49m2 – 112mn + 64n2 + 49m2 + 112mn + 64n2
= 98m2 + 128n2

iv) (4m + 5n)+ (5m + 4n)2
= 16m2 + 40mn + 25n2 + 25m2 + 40mn + 16n2
= 41m2 + 80mn + 41n2

v) (2.5p – 1.5q)– (1.5p – 2.5q)2
= 6.25p2 – 7.5pq + 2.25q2 – 2.25p2 + 7.5pq – 6.25q2
= 4p2 – 4q2

vi) (ab + bc)2– 2ab²c = a2b2 + 2ab2c + b2c2 – 2ab2c = a2b2 + b2c2

vii) (m– n2m)+ 2m3n2
= m4 – 2m3n2 + m2n4 + 2m3n2
= m4 + m2n4

5. Show that.

(i) (3x + 7)– 84x = (3x – 7)2

(ii) (9p – 5q)2+ 180pq = (9p + 5q)2

(iii) (4/3m – 3/4n)2 + 2mn = 16/9 m2 + 9/16 n2

(iv) (4pq + 3q)2– (4pq – 3q)= 48pq2

(v) (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a) = 0

Solution:

i) LHS = (3x + 7)– 84x

= 9x2 + 42x + 49 – 84x
= 9x2 – 42x + 49
= RHS

LHS = RHS

ii)  LHS = (9p – 5q)2+ 180pq
= 81p2 – 90pq + 25q2 + 180pq
= 81p2 + 90pq + 25q2
RHS = (9p + 5q)2
= 81p2 + 90pq + 25q2
LHS = RHS

LHS = RHS

iv)  LHS = (4pq + 3q)2– (4pq – 3q)2

= 16p2q2 + 24pq2 + 9q2 – 16p2q2 + 24pq2 – 9q2

= 48pq2

= RHS

LHS = RHS

v) LHS = (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a)

= a2 – b2 + b2 – c2 + c2 – a2

= 0

= RHS

6. Using identities, evaluate.

(i) 71²

(ii) 99²

(iii) 1022

(iv) 998²

(v) 5.2²

(vi) 297 x 303

(vii) 78 x 82

(viii) 8.92

(ix) 10.5 x 9.5

Solution:

i) 712

= (70+1)2

= 702 + 140 + 12

= 4900 + 140 +1

= 5041

ii) 99²

= (100 -1)2

= 1002 – 200 + 12

= 10000 – 200 + 1

= 9801

iii) 1022

= (100 + 2)2

= 1002 + 400 + 22

= 10000 + 400 + 4 = 10404

iv) 9982

= (1000 – 2)2

= 10002 – 4000 + 22

= 1000000 – 4000 + 4

= 996004

v) 5.22

= (5 + 0.2)2

= 52 + 2 + 0.22

= 25 + 2 + 0.04 = 27.04

vi) 297 x 303

= (300 – 3 )(300 + 3)

= 3002 – 32

= 90000 – 9

= 89991

vii) 78 x 82

= (80 – 2)(80 + 2)

= 802 – 22

= 6400 – 4

= 6396

viii) 8.92

= (9 – 0.1)2

= 92 – 1.8 + 0.12

= 81 – 1.8 + 0.01

= 79.21

ix) 10.5 x 9.5

= (10 + 0.5)(10 – 0.5)

= 102 – 0.52

= 100 – 0.25

= 99.75

7. Using a2 – b2 = (a + b) (a – b), find

(i) 512– 492

(ii) (1.02)2– (0.98)2

(iii) 1532– 1472

(iv) 12.12– 7.92

Solution:

i) 512– 492

= (51 + 49)(51 – 49) = 100 x 2 = 200

ii) (1.02)2– (0.98)2

= (1.02 + 0.98)(1.02 – 0.98) = 2 x 0.04 = 0.08

iii) 1532 – 1472

= (153 + 147)(153 – 147) = 300 x 6 = 1800

iv) 12.12 – 7.92

= (12.1 + 7.9)(12.1 – 7.9) = 20 x 4.2= 84

8. Using (x + a) (x + b) = x2 + (a + b) x + ab, find

(i) 103 x 104

(ii) 5.1 x 5.2

(iii) 103 x 98

(iv) 9.7 x 9.8

Solution:

i) 103 x 104

= (100 + 3)(100 + 4)

= 1002 + (3 + 4)100 + 12

= 10000 + 700 + 12

= 10712

ii) 5.1 x 5.2

= (5 + 0.1)(5 + 0.2)

= 52 + (0.1 + 0.2)5 + 0.1 x 0.2

= 25 + 1.5 + 0.02

= 26.52

iii) 103 x 98

= (100 + 3)(100 – 2)

= 1002 + (3-2)100 – 6

= 10000 + 100 – 6

= 10094

iv) 9.7 x 9.8

= (9 + 0.7 )(9 + 0.8)

= 92 + (0.7 + 0.8)9 + 0.56

= 81 + 13.5 + 0.56

= 95.06

 Also Access NCERT Exemplar for class 8 Maths Chapter 9 CBSE Notes for class 8 Maths Chapter 9

### NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities

The NCERT Solutions for Class 8 CBSE Maths Chapter 9, explains basic concepts like terms, factors, coefficients, like and unlike terms, addition and subtraction of algebraic expressions, and multiplication of two or more polynomials. Students will also learn about various algebraic expression identities and solve problems applying these identities. In NCERT Class 8, Chapter 9 – Algebraic Expressions and Identities carries a total weightage of 8 to 10 marks in the final examination. Students can utilize the NCERT Solutions for Class 8 Maths Chapter 9 while solving the exercise questions and preparing for their examination.

### Get detailed solutions for all the questions listed under the below exercises:

Exercise 9.1 Solutions: 4 Questions (Short answers)
Exercise 9.2 Solutions: 5 Questions (Short answers)
Exercise 9.3 Solutions: 5 Questions (Short answers)
Exercise 9.4 Solutions : 3 Questions (Short answers)
Exercise 9.5 Solutions: 8 Questions (Short answers)

### NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities

NCERT Solutions for Class 8 Maths Chapter 9 is mainly about the study of solving polynomial related problems. The chapter builds a strong foundation for the students to deal with higher grade Maths problems.

#### The main topics covered in this chapter include:

 Exercise Topic 9.1 What are Expressions? 9.2 Terms, Factors and Coefficients 9.3 Monomials, Binomials and Polynomials 9.4 Like and Unlike Terms 9.5 Addition and Subtraction of Algebraic Expressions 9.6 Multiplication of Algebraic Expressions: Introduction 9.7 Multiplying a Monomial by a Monomial 9.8 Multiplying a Monomial by a Polynomial 9.9 Multiplying a Polynomial by a Polynomial 9.10 What is an Identity? 9.11 Standard Identities 9.12 Applying Identities

Students can utilise the NCERT Solutions for Class 8 Maths Chapter 9 for any quick references to comprehend and solve complex problems.

### Key Features of NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities

1. NCERT Solutions provides fully resolved step by step solutions to all textbook questions.
2. Set of solutions contain a list of all important formulas on algebraic identities.
3. These solutions are designed based on the latest syllabus.
4. Solutions are prepared by subject experts.
5. NCERT Solutions are helpful for the preparation of competitive exams.

## Frequently Asked Questions on NCERT Solutions for Class 8 Maths Chapter 9

### How is NCERT Solutions for Class 8 Maths Chapter 9 helpful for board exams?

NCERT Solutions for Class 8 Maths Chapter 9 provides answers with detailed descriptions as per the term limit particularised by the Board for self-evaluation. Solving these solutions will provide excellent practice for the students so they can finish the paper on time. So, it’s clear that the NCERT Solutions for Class 8 Maths Chapter 9 are essential to score high in examinations. Students can get acquainted with writing exams and will be able to face exams more confidently.

### Is it necessary to practice all the exercises present in Chapter 9 of NCERT Solutions for Class 8 Maths?

Yes, it is compulsory to practice all the exercises present in Chapter 9 of NCERT Solutions for Class 8 Maths. Because all exercises contain numerous questions to solve which may come in their finals. This makes them more confident towards the syllabus they have.

### Mention the topics that are covered in NCERT Solutions for Class 8 Maths Chapter 9?

The topics that are covered in NCERT Solutions for Class 8 Maths Chapter 9 are 9.1 – introduction to expressions, 9.2 – terms, factors and coefficients, 9.3 – monomials, binomials and polynomials, 9.4 – like and unlike terms, 9.5 – addition and subtraction of algebraic expressions, 9.6 – multiplication of algebraic expressions: introduction, 9.7 – multiplying a monomial by a monomial, 9.8 – multiplying a monomial by a polynomial, 9.9 – multiplying a polynomial by a polynomial, 9.10 – definition and meaning of identity, 9.11 – standard identities and 9.12 – applying identities.