RD Sharma Solutions for Class 11 Chapter 13 - Complex Numbers Exercise 13.1

In Exercise 13.1 of Chapter 13, we shall discuss problems based on the integral powers of IOTA (i) and also study what the need for complex numbers is. The RD Sharma Class 11 Solutions for Maths are designed for students who aim to score high marks in their board exams. By referring to these solutions, students can follow the correct methodology for solving problems and can also clear their doubts pertaining to any question. Students can easily download RD Sharma Class 11 Solutions, which are available in PDF format, from the links given below.

RD Sharma Solutions for Class 11 Maths Exercise 13.1 Chapter 13 – Complex Numbers

Download PDF Download PDF

 

Also, access other exercises of RD Sharma Solutions for Class 11 Maths Chapter 13 – Complex Numbers

Exercise 13.2 Solutions

Exercise 13.3 Solutions

Exercise 13.4 Solutions

Access answers to RD Sharma Solutions for Class 11 Maths Exercise 13.1 Chapter 13 – Complex Numbers

1. Evaluate the following:

(i) i 457

(ii) i 528

(iii) 1/ i58

(iv) i 37 + 1/i 67

(v) [i 41 + 1/i 257]

(vi) (i 77 + i 70 + i 87 + i 414)3

(vii) i 30 + i 40 + i 60

(viii) i 49 + i 68 + i 89 + i 110

Solution:

(i) i 457

Let us simplify.

i457 = i (456 + 1)

= i 4(114) × i

= (1)114 × i

= i [since i4 = 1]

(ii) i 528

Let us simplify.

i 528 = i 4(132)

= (1)132

= 1 [since i4 = 1]

(iii) 1/ i58

Let us simplify.

1/ i58 = 1/ i 56+2

= 1/ i 56 × i2

= 1/ (i4)14 × i2

= 1/ i2 [since, i4 = 1]

= 1/-1 [since, i2 = -1]

= -1

(iv) i 37 + 1/i 67

Let us simplify.

i 37 + 1/i 67 = i36+1 + 1/ i64+3

= i + 1/i3 [since, i4 = 1]

= i + i/i4

= i + i

= 2i

(v) [i 41 + 1/i 257]

Let us simplify.

[i 41 + 1/i 257] = [i40+1 + 1/ i256+1]

= [i + 1/i]9 [since, 1/i = -1]

= [i – i]

= 0

(vi) (i 77 + i 70 + i 87 + i 414)3

Let us simplify.

(i 77 + i 70 + i 87 + i 414)3 = (i(76 + 1) + i(68 + 2) + i(84 + 3) + i(412 + 2) ) 3

= (i + i2 + i3 + i2)3 [since i3 = – i, i2 = – 1]

= (i + (– 1) + (– i) + (– 1)) 3

= (– 2)3

= – 8

(vii) i 30 + i 40 + i 60

Let us simplify.

i 30 + i 40 + i 60 = i(28 + 2) + i40 + i60

= (i4)7 i2 + (i4)10 + (i4)15

= i2 + 110 + 115

= – 1 + 1 + 1

= 1

(viii) i 49 + i 68 + i 89 + i 110

Let us simplify.

i 49 + i 68 + i 89 + i 110 = i(48 + 1) + i68 + i(88 + 1) + i(116 + 2)

= (i4)12×i + (i4)17 + (i4)22×i + (i4)29×i2

= i + 1 + i – 1

= 2i

2. Show that 1 + i10 + i20 + i30 is a real number.

Solution:

Given:

1 + i10 + i20 + i30 = 1 + i(8 + 2) + i20 + i(28 + 2)

= 1 + (i4)2 × i2 + (i4)5 + (i4)7 × i2

= 1 – 1 + 1 – 1 [since, i4 = 1, i2 = – 1]

= 0

Hence, 1 + i10 + i20 + i30 is a real number.

3. Find the values of the following expressions:

(i) i49 + i68 + i89 + i110

(ii) i30 + i80 + i120

(iii) i + i2 + i3 + i4

(iv) i5 + i10 + i15

(v) [i592 + i590 + i588 + i586 + i584] / [i582 + i580 + i578 + i576 + i574]

(vi) 1 + i2 + i4 + i6 + i8 + … + i20

(vii) (1 + i)6 + (1 – i)3

Solution:

(i) i49 + i68 + i89 + i110

Let us simplify.

i49 + i68 + i89 + i110 = i (48 + 1) + i68 + i(88 + 1) + i(108 + 2)

= (i4)12 × i + (i4)17 + (i4)22 × i + (i4)27 × i2

= i + 1 + i – 1 [since i4 = 1, i2 = – 1]

= 2i

∴ i49 + i68 + i89 + i110 = 2i

(ii) i30 + i80 + i120

Let us simplify.

i30 + i80 + i120 = i(28 + 2) + i80 + i120

= (i4)7 × i2 + (i4)20 + (i4)30

= – 1 + 1 + 1 [since i4 = 1, i2 = – 1]

= 1

∴ i30 + i80 + i120 = 1

(iii) i + i2 + i3 + i4

Let us simplify.

i + i2 + i3 + i4 = i + i2 + i2×i + i4

= i – 1 + (– 1) × i + 1 [since i4 = 1, i2 = – 1]

= i – 1 – i + 1

= 0

∴ i + i2 + i3 + i4 = 0

(iv) i5 + i10 + i15

Let us simplify.

i5 + i10 + i15 = i(4 + 1) + i(8 + 2) + i(12 + 3)

= (i4)1×i + (i4)2×i2 + (i4)3×i3

= (i4)1×i + (i4)2×i2 + (i4)3×i2×i

= 1×i + 1 × (– 1) + 1 × (– 1)×i

= i – 1 – i

= – 1

∴ i5 + i10 + i15 = -1

(v) [i592 + i590 + i588 + i586 + i584] / [i582 + i580 + i578 + i576 + i574]

Let us simplify.

[i592 + i590 + i588 + i586 + i584] / [i582 + i580 + i578 + i576 + i574]

= [i10 (i582 + i580 + i578 + i576 + i574) / (i582 + i580 + i578 + i576 + i574)]

= i10

= i8 i2

= (i4)2 i2

= (1)2 (-1) [since i4 = 1, i2 = -1]

= -1 

∴ [i592 + i590 + i588 + i586 + i584] / [i582 + i580 + i578 + i576 + i574] = -1

(vi) 1 + i2 + i4 + i6 + i8 + … + i20

Let us simplify.

1 + i2 + i4 + i6 + i8 + … + i20 = 1 + (– 1) + 1 + (– 1) + 1 + … + 1

= 1

∴ 1 + i2 + i4 + i6 + i8 + … + i20 = 1

(vii) (1 + i)6 + (1 – i)3

Let us simplify.

(1 + i)6 + (1 – i)3 = {(1 + i)2 }3 + (1 – i)2 (1 – i)

= {1 + i2 + 2i}3 + (1 + i2 – 2i)(1 – i)

= {1 – 1 + 2i}3 + (1 – 1 – 2i)(1 – i)

= (2i)3 + (– 2i)(1 – i)

= 8i3 + (– 2i) + 2i2

= – 8i – 2i – 2 [since i3 = – i, i2 = – 1]

= – 10 i – 2

= – 2(1 + 5i)

= – 2 – 10i

∴ (1 + i)6 + (1 – i)3 = – 2 – 10i

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*

Tuition Center
Tuition Centre
free trial
Free Trial Class
Scholarship Test
Scholarship Test
Question and Answer
Question & Answer