RD Sharma Solutions for Class 11 Chapter 28 - Introduction to Three Dimensional Coordinate Geometry Exercise 28.2

Download the free PDF of RD Sharma Class 11 Maths Chapter 28 – Introduction to Three Dimensional Coordinate Geometry. Experts at BYJU’S have designed these solutions in a very clear manner that helps students solve problems in the most efficient way. Securing good marks has become much easier with the usage of RD Sharma Class 11 Maths Solutions. In Exercise 28.2 we shall discuss problems based on the distance formula. Students can refer to and download RD Sharma Class 11 Maths Solutions from the links provided below.

RD Sharma Solutions for Class 11 Maths Exercise 28.2 Chapter 28 – Introduction to Three-Dimensional Coordinate Geometry

Download PDF Download PDF

Also, access other exercises of RD Sharma Solutions for Class 11 Maths Chapter 28 – Introduction to Three-Dimensional Coordinate Geometry

Exercise 28.1 Solutions

Exercise 28.3 Solutions

Access answers to RD Sharma Solutions for Class 11 Maths Exercise 28.2 Chapter 28 – Introduction to Three-Dimensional Coordinate Geometry

ExERCISE 28.2 PAGE NO: 28.9

1. Find the distance between the following pairs of points:
(i) P(1, -1, 0) and Q (2, 1, 2)

(ii) A(3, 2, -1) and B (-1, -1, -1)

Solution:

(i) P(1, -1, 0) and Q (2, 1, 2)

Given:

The points P(1, -1, 0) and Q (2, 1, 2)

By using the formula,

The distance between any two points (a, b, c) and (m, n, o) is given by,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 5

∴ The Distance between P and Q is 3 units.

(ii) A (3, 2, -1) and B (-1, -1, -1)

Given:

Points A (3, 2, -1) and B (-1, -1, -1)

By using the formula,

The distance between any two points (a, b, c) and (m, n, o) is given by,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 6

= 5

∴ The distance between A and B is 5 units.

2. Find the distance between the points P and Q having coordinates (-2, 3, 1) and (2, 1, 2).

Solution:

Given:

Points (-2, 3, 1) and (2, 1, 2)

By using the formula,

The distance between any two points (a, b, c) and (m, n, o) is given by,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 7

∴ The distance between the given two points is 21 units.

3. Using distance formula prove that the following points are collinear:
(i) A(4, -3, -1), B(5, -7, 6) and C(3, 1, -8)

(ii) P(0, 7, -7), Q(1, 4, -5) and R(-1, 10, -9)

(iii) A(3, -5, 1), B(-1, 0, 8) and C(7, -10, -6)
Solution:

(i) A(4, -3, -1), B(5, -7, 6) and C(3, 1, -8)

Given:

Points A(4, -3, -1), B(5, -7, 6) and C(3, 1, -8)

Points A, B and C are collinear if AB + BC = AC or AB + AC = BC or AC + BC = AB

By using the formula,

The distance between any two points (a, b, c) and (m, n, o) is given by,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 8

= 66

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 9

∴The points A, B and C are collinear.

(ii) P (0, 7, -7), Q (1, 4, -5) and R (-1, 10, -9)

Given:

The points P (0, 7, -7), Q (1, 4, -5) and R (-1, 10, -9)

Points P, Q and R are collinear if PQ + QR = PR or PQ + PR = QR or PR + QR = PQ

By using the formula,

Distance between any two points (a, b, c) and (m, n, o) is given by,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 10

= 14

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 11

∴The points P, Q and R are collinear.

(iii) A(3, -5, 1), B(-1, 0, 8) and C(7, -10, -6)

Given:

Points A(3, -5, 1), B(-1, 0, 8) and C(7, -10, -6)

Points A, B and C are collinear if AB + BC = AC or AB + AC = BC or AC + BC = AB

By using the formula,

The distance between any two points (a, b, c) and (m, n, o) is given by,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 12

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 13

Description: RD Sharma Solutions for Class 11 Maths Chapter 28 – image 14

∴Points A, B and C are collinear.

4. Determine the points in (i) xy-plane (ii) yz-plane and (iii) zx-plane which are equidistant from the points A(1, -1, 0), B(2, 1, 2) and C(3, 2, -1).

Solution:

Given:

The points A(1, -1, 0), B(2, 1, 2) and C(3, 2, -1)

(i) xy-plane

We know z = 0 in xy-plane.

So let P(x, y, 0) be any point in xy-plane

According to the question:

PA = PB = PC

PA2 = PB2 = PC2

By using the formula,

The distance between any two points (a, b, c) and (m, n, o) is given by,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 15

We know PA2 = PB2

So, (x – 1)2+ (y + 1)2 = (x – 2)2 + (y – 1)2 + 4

x2+ 1 – 2x + y2 + 1 + 2y = x2+ 4 – 4x + y2 + 1 – 2y + 4

– 2x + 2 + 2y = 9 – 4x – 2y

– 2x + 2 + 2y – 9 + 4x + 2y = 0

2x + 4y – 7 = 0

2x = – 4y + 7……………………(1)

Since, PA2 = PC2

So, (x – 1)2+ (y + 1)2 = (x – 3)2 + (y – 2)2 + 1

x2+ 1 – 2x + y2 + 1 + 2y = x2+ 9 – 6x + y2 + 4 – 4y + 1

– 2x + 2 + 2y = 14 – 6x – 4y

– 2x + 2 + 2y – 14 + 6x + 4y = 0

4x + 6y – 12 = 0

2(2x + 3y – 6) = 0

Now substitute the value of 2x (obtained in equation (1)), and we get

7 – 4y + 3y – 6 = 0

– y + 1 = 0

y = 1

By substituting the value of y back in equation (1), we get,

2x = 7 – 4y

2x = 7 – 4(1)

2x = 3

x = 3/2

∴The point P (3/2, 1, 0) in the xy-plane is equidistant from A, B and C.

(ii) yz-plane

We know x = 0 in the yz-plane.

Let Q(0, y, z) any point in yz-plane

According to the question:

QA = QB = QC

QA2 = QB2 = QC2

By using the formula,

The distance between any two points (a, b, c) and (m, n, o) is given by,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 16

We know QA2 = QB2

So, 1 + z2+ (y + 1)2 = (z – 2)2 + (y – 1)2 + 4

z2+ 1 + y2 + 1 + 2y = z2+ 4 – 4z + y2 + 1 – 2y + 4

2 + 2y = 9 – 4z – 2y

2 + 2y – 9 + 4z + 2y = 0

4y + 4z – 7 = 0

4z = –4y + 7

z = [–4y + 7]/4 …. (1)

Since, QA2 = QC2

So, 1 + z2+ (y + 1)2 = (z + 1)2 + (y – 2)2 + 9

2+ 1 + y2 + 1 + 2y = z2+ 1 + 2z + y2 + 4 – 4y + 9

2 + 2y = 14 + 2z – 4y

2 + 2y – 14 – 2z + 4y = 0

–2z + 6y – 12 = 0

2(–z + 3y – 6) = 0

Now, substitute the value of z [obtained from (1)] we get

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 17

12y + 4y – 7 – 24 = 0

16y – 31 = 0

y = 31/16

Substitute the value of y back in equation (1), and we get

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 18

= -3/16

∴The point Q (0, 31/16, -3/16) in the yz-plane is equidistant from A, B and C.

(iii) zx-plane

We know y = 0 in the xz-plane.

Let R(x, 0, z) any point in the xz-plane

According to the question:

RA = RB = RC

RA2 = RB2 = RC2

By using the formula,

The distance between any two points (a, b, c) and (m, n, o) is given by,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 19

We know, RA2 = RB2

So, 1 + z2+ (x – 1)2 = (z – 2)2 + (x – 2)2 + 1

z2+ 1 + x2 + 1 – 2x = z2+ 4 – 4z + x2 + 4 – 4x + 1

2 – 2x = 9 – 4z – 4x

2 + 4z – 9 + 4x – 2x = 0

2x + 4z – 7 = 0

2x = –4z + 7……………………………(1)

Since, RA2 = RC2

So, 1 + z2+ (x – 1)2 = (z + 1)2 + (x – 3)2 + 4

z2+ 1 + x2 + 1 – 2x = z2+ 1 + 2z + x2 + 9 – 6x + 4

2 – 2x = 14 + 2z – 6x

2 – 2x – 14 – 2z + 6x = 0

–2z + 4x – 12 = 0

2(2x) = 12 + 2z

Substitute the value of 2x [obtained from equation (1)] we get,

2(–4z + 7) = 12 + 2z

–8z + 14 = 12 + 2z

14 – 12 = 8z + 2z

10z = 2

z = 2/10

= 1/5

Now, substitute the value of z back in equation (1), and we get

2x = -4z + 7

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 20

∴The point R (31/10, 0, 1/5) in the xz-plane is equidistant from A, B and C.

5. Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, -4)

Solution:

Given:

The points (1, 5, 7) and (5, 1, -4)

We know x = 0 and y = 0 on z-axis

Let R(0, 0, z) any point on z-axis

According to the question:

RA = RB

RA2 = RB2

By using the formula,

The distance between any two points (a, b, c) and (m, n, o) is given by,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 21

We know RA2 = RB2

26+ (z – 7)2 = (z + 4)2 + 26

z2+ 49 – 14z + 26 = z2+ 16 + 8z + 26

49 – 14z = 16 + 8z

49 – 16 = 14z + 8z

22z = 33

z = 33/22

= 3/2

∴The point R (0, 0, 3/2) on z-axis is equidistant from (1, 5, 7) and (5, 1, -4).

6. Find the point on the y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).

Solution:

Given:

Points (3, 1, 2) and (5, 5, 2)

We know x = 0 and z = 0 on y-axis

Let R(0, y, 0) any point on the y-axis

According to the question:

RA = RB

RA2 = RB2

By using the formula,

The distance between any two points (a, b, c) and (m, n, o) is given by,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 22

So,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 23

We know, RA2 = RB2

13+ (y – 1)2 = (y – 5)2 + 29

y2+ 1 – 2y + 13 = y2+ 25 – 10y + 29

10y – 2y = 54 – 14

8y = 40

y = 40/8

= 5

∴The point R (0, 5, 0) on the y-axis is equidistant from (3, 1, 2) and (5, 5, 2).

7. Find the points on z-axis which are at a distance√21 from the point (1, 2, 3).

Solution:

Given:

The point (1, 2, 3)

Distance = √21 

We know x = 0 and y = 0 on z-axis

Let R(0, 0, z) any point on z-axis

According to the question:

RA = √21 

RA2 = 21

By using the formula,

The distance between any two points (a, b, c) and (m, n, o) is given by,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 24

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 25

We know, RA2 = 21

5 + (z – 3)2 = 21

z2+ 9 – 6z + 5 = 21

z2 – 6z = 21 – 14

z2– 6z – 7 = 0

z2– 7z + z – 7 = 0

z(z– 7) + 1(z – 7) = 0

(z– 7) (z + 1) = 0

(z– 7) = 0 or (z + 1) = 0

z= 7 or z = -1

∴The points (0, 0, 7) and (0, 0, -1) on z-axis is equidistant from (1, 2, 3).

8. Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.

Solution:

Given:

The points (1, 2, 3), (2, 3, 1) and (3, 1, 2)

An equilateral triangle is a triangle whose all sides are equal.

So let us prove AB = BC = AC

By using the formula,

The distance between any two points (a, b, c) and (m, n, o) is given by,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 26

= 6

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 27

It is clear that,

AB = BC = AC

Δ ABC is an equilateral triangle

Hence Proved.

9. Show that the points (0, 7, 10), (-1, 6, 6) and (-4, 9, 6) are the vertices of an isosceles right-angled triangle.

Solution:

Given:

The points (0, 7, 10), (-1, 6, 6) and (-4, 9, 6)

Isosceles right-angled triangle is a triangle whose two sides are equal and also satisfies Pythagoras Theorem.

By using the formula,

The distance between any two points (a, b, c) and (m, n, o) is given by,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 28

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 29

Since, AB = BC

So, AB2 + BC2

= (32)2 + (32)2

= 18 + 18

= 36

= AC2

We know that, AB = BC and AB2 + BC2 = AC2

So, Δ ABC is an isosceles right-angled triangle

Hence Proved.

10. Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of squares.

Solution:

Given:

Points A (3, 3, 3), B (0, 6, 3), C (1, 7, 7) and D (4, 4, 7)

We know that all sides of a square are equal.

By using the formula,

The distance between any two points (a, b, c) and (m, n, o) is given by,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 30

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 31

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 32

It is clear that,

AB = BC = CD = AD

The quadrilateral formed by ABCD is a square. [Since all sides are equal]

Hence Proved.

11. Prove that the point A(1, 3, 0), B(-5, 5, 2), C(-9, -1, 2) and D(-3, -3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.

Solution:

Given:

The points A (1, 3, 0), B (-5, 5, 2), C (-9, -1, 2) and D (-3, -3, 0)

We know that the opposite sides of both parallelogram and rectangle are equal.

But the diagonals of a parallelogram are not equal, whereas they are equal for a rectangle.

By using the formula,

The distance between any two points (a, b, c) and (m, n, o) is given by,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 33

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 34

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 35

It is clear that,

AB = CD

BC = AD

Opposite sides are equal

Now, let us find the length of diagonals

By using the formula,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 36

It is clear that,

AC ≠ BD

The diagonals are not equal, but opposite sides are equal.

So we can say that the quadrilateral formed by ABCD is a parallelogram but not a rectangle.

Hence Proved.

12.Show that the points A(1, 3, 4), B(-1, 6, 10), C(-7, 4, 7) and D(-5, 1, 1) are the vertices of a rhombus.

Solution:

Given:

Points A (1, 3, 4), B (-1, 6, 10), C (-7, 4, 7) and D (-5, 1, 1)

We know that all sides of both a square and a rhombus are equal.

But the diagonals of a rhombus are not equal, whereas they are equal for a square.

By using the formula,

The distance between any two points (a, b, c) and (m, n, o) is given by,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 37

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 38

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 39

It is clear that,

AB = BC = CD = AD

So, all sides are equal

Now, let us find the length of diagonals

By using the formula,

RD Sharma Solutions for Class 11 Maths Chapter 28 – image 40

It is clear that,

AC ≠ BD

The diagonals are not equal, but all sides are equal.

So we can say that the quadrilateral formed by ABCD is a rhombus but not a square.

Hence Proved.

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*

Tuition Center
Tuition Centre
free trial
Free Trial Class
Scholarship Test
Scholarship Test
Question and Answer
Question & Answer