RD Sharma Solutions Class 11 Maths Chapter 7 – Free PDF Download
RD Sharma Solutions for Class 11 Maths Chapter 7 – Values of Trigonometric Functions at Sum or Difference of Angles is provided here. In this chapter, we shall derive formulae that express the values of trigonometric functions at the sum or difference of two real numbers (or angles) in terms of the values of trigonometric functions at individual numbers (or angles). The subject experts at BYJU’S have formulated the RD Sharma Class 11 Solutions for Maths in the most lucid and easy manner. The solutions to this chapter are available in PDF format, which can be downloaded easily from the links provided below.
Chapter 7 – Values of Trigonometric Functions at Sum or Difference of Angles contains two exercises. RD Sharma Solutions provide accurate answers to each question of these exercises as per the grasping abilities of students. Now, let us have a look at the concepts discussed in this chapter.
- Values of trigonometric functions at the sum or difference.
- Cosine of the difference and sum of two numbers.
- The sine of the difference and sum of two numbers.
- Tangent of the difference and sum of two numbers.
- A few theorems.
- Maximum and minimum values of trigonometrical expressions.
- To express the given expressions in the desired form.
RD Sharma Solutions for Class 11 Maths Chapter 7 – Values of Trigonometric Functions at Sum or Difference of Angles
Also, access exercises of RD Sharma Solutions for Class 11 Maths Chapter 7 – Values of Trigonometric Functions at Sum or Difference of Angles
Access answers to RD Sharma Solutions for Class 11 Maths Chapter 7 – Values of Trigonometric Functions at Sum or Difference of Angles
EXERCISE 7.1 PAGE NO: 7.19
1. If sin A = 4/5 and cos B = 5/13, where 0 <A, B < π/2, find the values of the following:
(i) sin (A + B)
(ii) cos (A + B)
(iii) sin (A – B)
(iv) cos (A – B)
Solution:
Given:
sin A = 4/5 and cos B = 5/13
We know that cos A = √(1 – sin2 A) and sin B = √(1 – cos2 B), where 0 <A, B < π/2
So let us find the value of sin A and cos B
cos A = √(1 – sin2 A)
= √(1 – (4/5)2)
= √(1 – (16/25))
= √((25 – 16)/25)
= √(9/25)
= 3/5
sin B = √(1 – cos2 B)
= √(1 – (5/13)2)
= √(1 – (25/169))
= √((169 – 25)/169)
= √(144/169)
= 12/13
(i) sin (A + B)
We know that sin (A +B) = sin A cos B + cos A sin B
So,
sin (A +B) = sin A cos B + cos A sin B
= 4/5 × 5/13 + 3/5 × 12/13
= 20/65 + 36/65
= (20+36)/65
= 56/65
(ii) cos (A + B)
We know that cos (A +B) = cos A cos B – sin A sin B
So,
cos (A + B) = cos A cos B – sin A sin B
= 3/5 × 5/13 – 4/5 × 12/13
= 15/65 – 48/65
= -33/65
(iii) sin (A – B)
We know that sin (A – B) = sin A cos B – cos A sin B
So,
sin (A – B) = sin A cos B – cos A sin B
= 4/5 × 5/13 – 3/5 × 12/13
= 20/65 – 36/65
= -16/65
(iv) cos (A – B)
We know that cos (A -B) = cos A cos B + sin A sin B
So,
cos (A -B) = cos A cos B + sin A sin B
= 3/5 × 5/13 + 4/5 × 12/13
= 15/65 + 48/65
= 63/65
2. (a) If Sin A = 12/13 and sin B = 4/5, where π/2<A < π and 0 <B < π/2, find the following:
(i) sin (A + B) (ii) cos (A + B).
(b) If sin A = 3/5, cos B = –12/13, where A and B, both lie in second quadrant, find the value of sin (A +B).
Solution:
(a) Given:
Sin A = 12/13 and sin B = 4/5, where π/2<A < π and 0 <B < π/2
We know that cos A = – √(1 – sin2 A) and cos B = √(1 – sin2 B)
So let us find the value of cos A and cos B
cos A = – √(1 – sin2 A)
= – √(1 – (12/13)2)
= – √(1-144/169)
= -√((169-144)/169)
= – √(25/169)
= – 5/13
cos B = √(1 – sin2 B)
= √(1 – (4/5)2)
= √(1-16/25)
= √((25-16)/25)
=√(9/25)
= 3/5
(i) sin (A +B)
We know that sin (A + B) = sin A cos B + cos A sin B
So,
sin (A +B) = sin A cos B + cos A sin B
= 12/13 × 3/5 + (-5/13) × 4/5
= 36/65 – 20/65
= 16/65
(ii) cos (A + B)
We know that cos (A +B) = cos A cos B – sin A sin B
So,
cos (A +B) = cos A cos B – sin A sin B
= -5/13 × 3/5 – 12/13 × 4/5
= -15/65 – 48/65
= – 63/65
(b) Given:
sin A = 3/5, cos B = –12/13, where A and B, both lie in second quadrant.
We know that cos A = – √(1 – sin2 A) and sin B = √(1 – cos2 B)
So let us find the value of cos A and sin B
cos A = – √(1 – sin2 A)
= – √(1 – (3/5)2)
= – √(1- 9/25)
= – √((25-9)/25)
= – √(16/25)
= – 4/5
sin B = √(1 – cos2 B)
= √(1 – (-12/13)2)
= √(1 – 144/169)
= √((169-144)/169)
= √(25/169)
= 5/13
We need to find sin (A + B)
Since, sin (A + B) = sin A cos B + cos A sin B
= 3/5 × (-12/13) + (-4/5) × 5/13
= -36/65 – 20/65
= -56/65
3. If cos A = – 24/25 and cos B = 3/5, where π <A < 3π/2 and 3π/2 <B < 2π, find the following:
(i) sin (A + B) (ii) cos (A + B).
Solution:
Given:
cos A = – 24/25 and cos B = 3/5, where π <A < 3π/2 and 3π/2 <B < 2π
We know that A is in third quadrant, B is in fourth quadrant. So sine function is negative.
By using the formulas,
sin A = – √(1 – cos2 A) and sin B = -√(1 – cos2 B)
So let us find the value of sin A and sin B
sin A = – √(1 – cos2 A)
= – √(1-(-24/25)2)
= – √(1-576/625)
= – √((625-576)/625)
= – √(49/625)
= -7/25
sin B = -√(1 – cos2 B)
= – √(1-(3/5)2)
= – √(1-9/25)
= – √((25-9)/25)
= – √(16/25)
= – 4/5
(i) sin (A + B)
We know that sin (A + B) = sin A cos B + cos A sin B
So,
sin (A + B) = sin A cos B + cos A sin B
= -7/25 × 3/5 + (-24/25) × (-4/5)
= -21/125 + 96/125
= 75/125
= 3/5
(ii) cos (A + B)
We know that cos (A + B) = cos A cos B – sin A sin B
So,
cos (A + B) = cos A cos B – sin A sin B
= (-24/25) × 3/5 – (-7/25) × (-4/5)
= -72/125 – 28/125
= -100/125
= – 4/5
4. If tan A = 3/4, cos B = 9/41, where π<A < 3π/2 and 0 <B < π/2, find tan (A + B).
Solution:
Given:
tan A = 3/4 and cos B = 9/41, where π <A < 3π/2 and 0 <B < π/2
We know that, A is in third quadrant, B is in first quadrant.
So, tan function And sine function are positive.
By using the formula,
sin B = √(1 – cos2 B)
Let us find the value of sin B.
sin B = √(1 – cos2 B)
= √(1- (9/41)2)
= √(1- 81/1681)
= √((1681-81)/1681)
= √(1600/1681)
= 40/41
We know, tan B = sin B/cos B
= (40/41) / (9/41)
= 40/9
So, tan (A + B) = (tan A + tan B) / (1 – tan A tan B)
= (3/4 + 40/9) / (1 – 3/4 × 40/9)
= (187/36) / (1- 120/36)
= (187/36) / ((36-120)/36)
= (187/36) / (-84/36)
= -187/84
5. If sin A = 1/2, cos B = 12/13, where π/2<A < π and 3π/2 <B < 2π, find tan(A – B).
Solution:
Given:
sin A = 1/2, cos B = 12/13, where π/2<A < π and 3π/2 <B < 2π
We know that, A is in second quadrant, B is in fourth quadrant.
In the second quadrant, sine function is positive, cosine and tan functions are negative.
In the fourth quadrant, sine and tan functions are negative, cosine function is positive.
By using the formulas,
cos A = – √(1 – sin2 A) and sin B = -√(1 – cos2 B)
So let us find the value of cos A and sin B
cos A = – √(1 – sin2 A)
= – √(1 – (1/2)2)
= – √(1- 1/4)
= – √((4-1)/4)
= – √(3/4)
= -√3/2
sin B = -√(1 – cos2 B)
= – √(1-(12/13)2)
= – √(1- 144/169)
= – √((169-144)/169)
= – √(25/169)
= – 5/13
We know, tan A = sin A / cos A and tan B = sin B / cos B
tan A = (1/2)/( -√3/2) = -1/√3 and
tan B = (-5/13)/(12/13) = -5/12
So, tan (A – B) = (tan A – tan B) / (1 + tan A tan B)
= ((-1/√3) – (-5/12)) / (1 + (-1/√3) × (-5/12))
= ((-12+5√3)/12√3) / (1 + 5/12√3)
= ((-12+5√3)/12√3) / ((12√3 + 5)/12√3)
= (5√3 – 12) / (5 + 12√3)
6. If sin A = 1/2, cos B = √3/2, where π/2<A < π and 0 <B < π/2, find the following:
(i) tan (A + B) (ii) tan (A – B).
Solution:
Given:
Sin A = 1/2 and cos B = √3/2, where π/2 <A < π and 0 <B < π/2
We know that, A is in second quadrant, B is in first quadrant.
In the second quadrant, sine function is positive. cosine and tan functions are negative.
In first quadrant, all functions are positive.
By using the formulas,
cos A = – √(1 – sin2 A) and sin B = √(1 – cos2 B)
So let us find the value of cos A and sin B
cos A = – √(1 – sin2 A)
= – √(1 – (1/2)2)
= – √(1- 1/4)
= – √((4-1)/4)
= – √(3/4)
= -√3/2
sin B = √(1 – cos2 B)
= √(1-(√3/2)2)
= √(1- 3/4)
= √((4-3)/4)
= √(1/4)
= 1/2
We know, tan A = sin A / cos A and tan B = sin B / cos B
tan A = (1/2)/( -√3/2) = -1/√3 and
tan B = (1/2)/(√3/2) = 1/√3
(i) tan (A + B) = (tan A + tan B) / (1 – tan A tan B)
= (-1/√3 + 1/√3) / (1 – (-1/√3) × 1/√3)
= 0 / (1 + 1/3)
= 0
(ii) tan (A – B) = (tan A – tan B) / (1 + tan A tan B)
= ((-1/√3) – (1/√3)) / (1 + (-1/√3) × (1/√3))
= (-2/√3) / (1 – 1/3)
= (-2/√3) / ((3-1)/3)
= ((-2/√3) / (2/3))
= – √3
7. Evaluate the following:
(i) sin 780 cos 180 – cos 780 sin 180
(ii) cos 470 cos 130 – sin 470 sin 130
(iii) sin 360 cos 90 + cos 360 sin 90
(iv) cos 800 cos 200 + sin 800 sin 200
Solution:
(i) sin 780 cos 180 – cos 780 sin 180
We know that sin (A – B) = sin A cos B – cos A sin B
sin 780 cos 180 – cos 780 sin 180 = sin(78 – 18) °
= sin 60°
= √3/2
(ii) cos 470 cos 130 – sin 470 sin 130
We know that cos A cos B – sin A sin B = cos (A + B)
cos 470 cos 130 – sin 470 sin 130 = cos (47 + 13) °
= cos 60°
= 1/2
(iii) sin 360 cos 90 + cos 360 sin 90
We know that sin (A +B) = sin A cos B + cos A sin B
sin 360 cos 90 + cos 360 sin 90 = sin (36 + 9) °
= sin 45°
= 1/√2
(iv) cos 800 cos 200 + sin 800 sin 200
We know that cos A cos B + sin A sin B = cos (A – B)
cos 800 cos 200 + sin 800 sin 200 = cos (80 – 20) °
= cos 60°
= ½
8. If cos A = –12/13 and cot B = 24/7, where A lies in the second quadrant and B in the third quadrant, find the values of the following:
(i) sin (A + B) (ii) cos (A + B) (iii) tan (A + B)
Solution:
Given:
cos A = -12/13 and cot B = 24/7
We know that, A lies in second quadrant, B in the third quadrant.
In the second quadrant sine function is positive.
In the third quadrant, both sine and cosine functions are negative.
By using the formulas,
sin A = √(1 – cos2 A), sin B = – 1/√(1 + cot2 B) and cos B = -√(1 – sin2 B),
So let us find the value of sin A and sin B
sin A = √(1 – cos2 A)
= √(1 – (-12/13)2)
= √(1 – 144/169)
= √((169-144)/169)
= √(25/169)
= 5/13
sin B = – 1/√(1 + cot2 B)
= – 1/√(1 + (24/7)2)
= – 1/√(1 + 576/49)
= -1/√((49+576)/49)
= -1/√(625/49)
= -1/(25/7)
= -7/25
cos B = -√(1 – sin2 B)
= -√(1-(-7/25)2)
= -√(1-(49/625))
= -√((625-49)/625)
= -√(576/625)
= -24/25
So, now let us find
(i) sin (A + B)
We know that sin (A + B) = sin A cos B + cos A sin B
So,
sin (A + B) = sin A cos B + cos A sin B
= 5/13 × (-24/25) + (-12/13) × (-7/25)
= -120/325 + 84/325
= -36/325
(ii) cos (A + B)
We know that cos (A + B) = cos A cos B – sin A sin B
So,
cos (A + B) = cos A cos B – sin A sin B
= -12/13 × (-24/25) – (5/13) × (-7/25)
= 288/325 + 35/325
= 323/325
(iii) tan (A + B)
We know that tan (A + B) = sin (A+B) / cos (A+B)
= (-36/325) / (323/325)
= -36/323
9. Prove that: cos 7π/12 + cos π/12 = sin 5π/12 – sin π/12
Solution:
We know that, 7π/12 = 105°, π/12 = 15°; 5π/12 = 75°
Let us consider LHS: cos 105° + cos 15°
cos (90° + 15°) + sin (90° – 75°)
-sin 15° + sin 75°
sin 75° – sin 15°
= RHS
∴ LHS = RHS
Hence proved.
10. Prove that: (tan A + tan B) / (tan A – tan B) = sin (A + B) / sin (A – B)
Solution:
Let us consider LHS: (tan A + tan B) / (tan A – tan B)
= RHS
∴ LHS = RHS
Hence proved.
11. Prove that:
(i) (cos 11o + sin 11o) / (cos 11o – sin 11o) = tan 56o
(ii) (cos 9o + sin 9o) / (cos 9o – sin 9o) = tan 54o
(iii) (cos 8o – sin 8o) / (cos 8o + sin 8o) = tan 37o
Solution:
(i) (cos 11o + sin 11o) / (cos 11o – sin 11o) = tan 56o
Let us consider LHS:
(cos 11o + sin 11o) / (cos 11o – sin 11o)
Now let us divide the numerator and denominator by cos 11o we get,
(cos 11o + sin 11o) / (cos 11o – sin 11o) = (1 + tan 11o) / (1 – tan 11o)
= (1 + tan 11o) / (1- 1×tan 11o)
= (tan 45o + tan 11o) / (1 – tan 45o × tan 11o)
We know that tan (A+B) = (tan A + tan B) / (1 – tan A tan B)
So,
(tan 45o + tan 11o) / (1 – tan 45o × tan 11o) = tan (45o + 11o)
= tan 56o
= RHS
∴ LHS = RHS
Hence proved.
(ii) (cos 9o + sin 9o) / (cos 9o – sin 9o) = tan 54o
Let us consider LHS:
(cos 9o + sin 9o) / (cos 9o – sin 9o)
Now let us divide the numerator and denominator by cos 9o we get,
(cos 9o + sin 9o) / (cos 9o – sin 9o) = (1 + tan 9o) / (1 – tan 9o)
= (1 + tan 9o) / (1 – 1 × tan 9o)
= (tan 45o + tan 9o) / (1 – tan 45o × tan 9o)
We know that tan (A+B) = (tan A + tan B) / (1 – tan A tan B)
So,
(tan 45o + tan 9o) / (1 – tan 45o × tan 9o) = tan (45o + 9o)
= tan 54o
= RHS
∴ LHS = RHS
Hence proved.
(iii) (cos 8o – sin 8o) / (cos 8o + sin 8o) = tan 37o
Let us consider LHS:
(cos 8o – sin 8o) / (cos 8o + sin 8o)
Now let us divide the numerator and denominator by cos 8o we get,
(cos 8o – sin 8o) / (cos 8o + sin 8o) = (1 – tan 8o) / (1 + tan 8o)
= (1 – tan 8o) / (1 + 1×tan 8o)
= (tan 45o – tan 8o) / (1 + tan 45o ×tan 8o)
We know that tan (A+B) = (tan A + tan B) / (1 – tan A tan B)
So,
(tan 45o – tan 8o) / (1 + tan 45o ×tan 8o) = tan (45o – 8o)
= tan 37o
= RHS
∴ LHS = RHS
Hence proved.
12. Prove that:
(i)
(ii)
(iii)
Solution:
(i)
= sin 90o
= 1
= RHS
∴ LHS = RHS
Hence proved.
(ii)
= sin 60o
= √3/2
= RHS
∴ LHS = RHS
Hence proved.
(iii)
= sin 90o
= 1
= RHS
∴ LHS = RHS
Hence proved.
13. Prove that: (tan 69o + tan 66o) / (1 – tan 69o tan 66o) = -1
Solution:
Let us consider LHS:
(tan 69o + tan 66o) / (1 – tan 69o tan 66o)
We know that, tan (A + B) = (tan A + tan B) / (1 – tan A tan B)
Here, A = 69o and B = 66o
So,
(tan 69o + tan 66o) / (1 – tan 69o tan 66o) = tan (69 + 66)o
= tan 135o
= – tan 45o
= – 1
= RHS
∴ LHS = RHS
Hence proved.
14. (i) If tan A = 5/6 and tan B = 1/11, prove that A + B = π/4
(ii) If tan A = m/(m–1) and tan B = 1/(2m – 1), then prove that A – B = π/4
Solution:
(i) If tan A = 5/6 and tan B = 1/11, prove that A + B = π/4
Given:
tan A = 5/6 and tan B = 1/11
We know that, tan (A + B) = (tan A + tan B) / (1 – tan A tan B)
= [(5/6) + (1/11)] / [1 – (5/6) × (1/11)]
= (55+6) / (66-5)
= 61/61
= 1
= tan 45o or tan π/4
So, tan (A + B) = tan π/4
∴ (A + B) = π/4
Hence proved.
(ii) If tan A = m/(m–1) and tan B = 1/(2m – 1), then prove that A – B = π/4
Given:
tan A = m/(m–1) and tan B = 1/(2m – 1)
We know that, tan (A – B) = (tan A – tan B) / (1 + tan A tan B)
= (2m2 – m – m + 1) / (2m2 – m – 2m + 1 + m)
= (2m2 – 2m + 1) / (2m2 – 2m + 1)
= 1
= tan 45o or tan π/4
So, tan (A – B) = tan π/4
∴ (A – B) = π/4
Hence proved.
15. prove that:
(i) cos2 π/4 – sin2 π/12 = √3/4
(ii) sin2 (n + 1) A – sin2nA = sin (2n + 1) A sin A
Solution:
(i) cos2 π/4 – sin2 π/12 = √3/4
Let us consider LHS:
cos2 π/4 – sin2 π/12
We know that, cos2A – sin2 B = cos (A + B) cos (A – B)
So,
cos2 π/4 – sin2 π/12 = cos (π/4 + π/12) cos (π/4 – π/12)
= cos 4π/12 cos 2π/12
= cos π/3 cos π/6
= 1/2 × √3/2
= √3/4
= RHS
∴ LHS = RHS
Hence proved.
(ii) sin2 (n + 1) A – sin2nA = sin (2n + 1) A sin A
Let us consider LHS:
sin2 (n + 1) A – sin2nA
We know that, sin2A – sin2 B = sin (A + B) sin (A – B)
Here, A = (n + 1) A and B = nA
So,
sin2 (n + 1) A – sin2n A = sin ((n + 1) A + nA) sin ((n + 1) A – nA)
= sin (nA +A + nA) sin (nA +A – nA)
= sin (2nA +A) sin (A)
= sin (2n + 1) A sin A
= RHS
∴ LHS = RHS
Hence proved.
16. Prove that:
(i)
(ii)
(iii)
(iv) sin2 B = sin2 A + sin2 (A-B) – 2sin A cos B sin (A – B)
(v) cos2 A + cos2 B – 2 cos A cos B cos (A +B) = sin2 (A + B)
(vi)
Solution:
(i)
= tan A
= RHS
∴ LHS = RHS
Hence proved.
(ii)
Let us consider LHS:
= tan A – tan B + tan B – tan C + tan C – tan A
= 0
= RHS
∴ LHS = RHS
Hence proved.
(iii)
= cotB – cotA + cot C – cotB + cotA – cot C
= 0
= RHS
∴ LHS = RHS
Hence proved.
(iv) sin2 B = sin2 A + sin2 (A-B) – 2sin A cos B sin (A – B)
Let us consider RHS:
sin2A + sin2 (A -B) – 2 sin A cos B sin (A – B)
sin2A + sin (A -B) [sin (A –B) – 2 sin A cos B]
We know that, sin (A –B) = sin A cos B – cos A sin B
So,
sin2A + sin (A -B) [sin A cos B – cos A sin B – 2 sin A cos B]
sin2A + sin (A -B) [-sin A cos B – cos A sin B]
sin2A – sin (A -B) [sin A cos B + cos A sin B]
We know that, sin (A +B) = sin A cos B + cos A sin B
So,
sin2A – sin (A – B) sin (A + B)
sin2 A – sin2 A + sin2 B
sin2 B
= LHS
∴ LHS = RHS
Hence proved.
(v) cos2 A + cos2 B – 2 cos A cos B cos (A + B) = sin2 (A + B)
Let us consider LHS:
cos2A + cos2B – 2 cos A cos B cos (A +B)
cos2A + 1 – sin2B – 2 cos A cos B cos (A +B)
1 + cos2A – sin2B – 2 cos A cos B cos (A +B)
We know that, cos2A – sin2B = cos (A +B) cos (A –B)
So,
1 + cos (A +B) cos (A –B) – 2 cos A cos B cos (A +B)
1 + cos (A +B) [cos (A –B) – 2 cos A cos B]
We know that, cos (A – B) = cos A cos B + sin A sin B.
So,
1 + cos (A +B) [cos A cos B + sin A sin B – 2 cos A cos B]
1 + cos (A +B) [-cos A cos B + sin A sin B]
1 – cos (A +B) [cos A cos B – sin A sin B]
We know that, cos (A +B) = cos A cos B – sin A sin B.
So,
1 – cos2 (A + B)
sin2 (A + B)
= RHS
∴ LHS = RHS
Hence proved.
(vi)
∴ LHS = RHS
Hence proved.
17. Prove that:
(i) tan 8x – tan 6x – tan 2x = tan 8x tan 6x tan 2x
(ii) tan π/12 + tan π/6 + tan π/12 tan π/6 = 1
(iii) tan 36o + tan 9o + tan 36o tan 9o = 1
(iv) tan 13x – tan 9x – tan 4x = tan 13x tan 9x tan 4x
Solution:
(i) tan 8x – tan 6x – tan 2x = tan 8x tan 6x tan 2x
Let us consider LHS:
tan 8x – tan 6x – tan 2x
tan 8x = tan(6x + 2x)
We know that, tan (A + B) = (tan A + tan B) / (1 – tan A tan B)
So,
tan 8x = (tan 6x + tan 2x) / (1 – tan 6x tan 2x)
By cross-multiplying we get,
tan 8x (1 – tan 6x tan 2x) = tan 6x + tan 2x
tan 8x – tan 8x tan 6x tan2x = tan 6x + tan 2x
Upon rearranging we get,
tan 8x – tan 6x – tan 2x = tan 8x tan 6x tan 2x
= RHS
∴ LHS = RHS
Hence proved.
(ii) tan π/12 + tan π/6 + tan π/12 tan π/6 = 1
We know,
π/12 = 15° and π/6 = 30°
So, we have 15° + 30° = 45°
Tan (15° + 30°) = tan 45°
We know that, tan (A + B) = (tan A + tan B) / (1 – tan A tan B)
So,
(tan 15o + tan 30o) / (1 – tan 15o tan 30o) = 1
tan 15° + tan 30° = 1 – tan 15° tan 30°
Upon rearranging we get,
tan15° + tan30° + tan15° tan30° = 1
Hence proved.
(iii) tan 36o + tan 9o + tan 36o tan 9o = 1
We know 36° + 9° = 45°
So we have,
tan (36° + 9°) = tan 45°
We know that, tan (A + B) = (tan A + tan B) / (1 – tan A tan B)
So,
(tan 36o + tan 9o) / (1 – tan 36o tan 9o) = 1
tan 36° + tan 9° = 1 – tan 36° tan 9°
Upon rearranging we get,
tan 36° + tan 9° + tan 36° tan 9° = 1
Hence proved.
(iv) tan 13x – tan 9x – tan 4x = tan 13x tan 9x tan 4x
Let us consider LHS:
tan 13x – tan 9x – tan 4x
tan 13x = tan (9x + 4x)
We know that, tan (A + B) = (tan A + tan B) / (1 – tan A tan B)
So,
tan 13x = (tan 9x + tan 4x) / (1 – tan 9x tan 4x)
By cross-multiplying we get,
tan 13x (1 – tan 9x tan 4x) = tan 9x + tan 4x
tan 13x – tan 13x tan 9x tan 4x = tan 9x + tan 4x
Upon rearranging we get,
tan 13x – tan 9x – tan 4x = tan 13x tan 9x tan 4x
= RHS
∴ LHS = RHS
Hence proved.
EXERCISE 7.2 PAGE NO: 7.26
1. Find the maximum and minimum values of each of the following trigonometrical expressions:
(i) 12 sin x – 5 cos x
(ii) 12 cos x + 5 sin x + 4
(iii) 5 cos x + 3 sin (π/6 – x) + 4
(iv) sin x – cos x + 1
Solution:
We know that the maximum value of A cos α + B sin α + C is C + √(A2 +B2),
And the minimum value is C – √(a2 +B2).
(i) 12 sin x – 5 cos x
Given: f(x) = 12 sin x – 5 cos x
Here, A = -5, B = 12 and C = 0
–√((-5)2 + 122) ≤ 12 sin x – 5 cos x ≤ √((-5)2 + 122)
–√(25+144) ≤ 12 sin x – 5 cos x ≤ √(25+144)
–√169 ≤ 12 sin x – 5 cos x ≤ √169
-13 ≤ 12 sin x – 5 cos x ≤ 13
Hence, the maximum and minimum values of f(x) are 13 and -13 respectively.
(ii) 12 cos x + 5 sin x + 4
Given: f(x) = 12 cos x + 5 sin x + 4
Here, A = 12, B = 5 and C = 4
4 – √(122 + 52) ≤ 12 cos x + 5 sin x + 4 ≤ 4 + √(122 + 52)
4 – √(144+25) ≤ 12 cos x + 5 sin x + 4 ≤ 4 + √(144+25)
4 –√169 ≤ 12 cos x + 5 sin x + 4 ≤ 4 + √169
-9 ≤ 12 cos x + 5 sin x + 4 ≤ 17
Hence, the maximum and minimum values of f(x) are -9 and 17 respectively.
(iii) 5 cos x + 3 sin (π/6 – x) + 4
Given: f(x) = 5 cos x + 3 sin (π/6 – x) + 4
We know that, sin (A – B) = sin A cos B – cos A sin B
f(x) = 5 cos x + 3 sin (π/6 – x) + 4
= 5 cos x + 3 (sin π/6 cos x – cos π/6 sin x) + 4
= 5 cos x + 3/2 cos x – 3√3/2 sin x + 4
= 13/2 cos x – 3√3/2 sin x + 4
So, here A = 13/2, B = – 3√3/2, C = 4
4 – √[(13/2)2 + (-3√3/2)2] ≤ 13/2 cos x – 3√3/2 sin x + 4 ≤ 4 + √[(13/2)2 + (-3√3/2)2]
4 – √[(169/4) + (27/4)] ≤ 13/2 cos x – 3√3/2 sin x + 4 ≤ 4 + √[(169/4) + (27/4)]
4 – 7 ≤ 13/2 cos x – 3√3/2 sin x + 4 ≤ 4 + 7
-3 ≤ 13/2 cos x – 3√3/2 sin x + 4 ≤ 11
Hence, the maximum and minimum values of f(x) are -3 and 11 respectively.
(iv) sin x – cos x + 1
Given: f(x) = sin x – cos x + 1
So, here A = -1, B = 1 And c = 1
1 – √[(-1)2 + 12] ≤ sin x – cos x + 1 ≤ 1 + √[(-1)2 + 12]
1 – √(1+1) ≤ sin x – cos x + 1 ≤ 1 + √(1+1)
1 – √2 ≤ sin x – cos x + 1 ≤ 1 + √2
Hence, the maximum and minimum values of f(x) are 1 – √2 and 1 + √2 respectively.
2. Reduce each of the following expressions to the Sine and Cosine of a single expression:
(i) √3 sin x – cos x
(ii) cos x – sin x
(iii) 24 cos x + 7 sin x
Solution:
(i) √3 sin x – cos x
Let f(x) = √3 sin x – cos x
Dividing and multiplying by √((√3)2 + 12) i.e. by 2
f(x) = 2(√3/2 sin x – 1/2 cos x)
Sine expression:
f(x) = 2(cos π/6 sin x – sin π/6 cos x) (since, √3/2 = cos π/6 and 1/2 = sin π/6)
We know that, sin A cos B – cos A sin B = sin (A – B)
f(x) = 2 sin (x – π/6)
Again,
f(x) = 2(√3/2 sin x – 1/2 cos x)
Cosine expression:
f(x) = 2(sin π/3 sin x – cos π/3 cos x)
We know that, cos A cos B – sin A sin B = cos (A + B)
f(x) = -2 cos(π/3 + x)
(ii) cos x – sin x
Let f(x) = cos x – sin x
Dividing and multiplying by √(12 + 12) i.e. by √2,
f(x) = √2(1/√2 cos x – 1/√2 sin x)
Sine expression:
f(x) = √2(sin π/4 cos x – cos π/4 sin x) (since, 1/√2 = sin π/4 and 1/√2 = cos π/4)
We know that sin A cos B – cos A sin B = sin (A – B)
f(x) = √2 sin (π/4 – x)
Again,
f(x) = √2(1/√2 cos x – 1/√2 sin x)
Cosine expression:
f(x) = 2(cos π/4 cos x – sin π/4 sin x)
We know that cos A cos B – sin A sin B = cos (A + B)
f(x) = √2 cos (π/4 + x)
(iii) 24 cos x + 7 sin x
Let f(x) = 24 cos x + 7 sin x
Dividing and multiplying by √((√24)2 + 72) = √625 i.e. by 25,
f(x) = 25(24/25 cos x + 7/25 sin x)
Sine expression:
f(x) = 25(sin α cos x + cos α sin x) where, sin α = 24/25 and cos α = 7/25
We know that sin A cos B + cos A sin B = sin (A + B)
f(x) = 25 sin (α + x)
Cosine expression:
f(x) = 25(cos α cos x + sin α sin x) where, cos α = 24/25 and sin α = 7/25
We know that cos A cos B + sin A sin B = cos (A – B)
f(x) = 25 cos (α – x)
3. Show that Sin 100o – Sin 10o is positive.
Solution:
Let f(x) = sin 100° – sin 10°
Dividing And multiplying by √(12 + 12) i.e. by √2,
f(x) = √2(1/√2 sin 100o – 1/√2 sin 10o)
f(x) = √2(cos π/4 sin (90+10)o – sin π/4 sin 10o) (since, 1/√2 = cos π/4 and 1/√2 = sin π/4)
f(x) = √2(cos π/4 cos 10o – sin π/4 sin 10o)
We know that cos A cos B – sin A sin B = cos (A + B)
f(x) = √2 cos (π/4 + 10o)
∴ f(x) = √2 cos 55°
4. Prove that (2√3 + 3) sin x + 2√3 cos x lies between – (2√3 + √15) and (2√3 + √15).
Solution:
Let f(x) = (2√3 + 3) sin x + 2√3 cos x
Here, A = 2√3, B = 2√3 + 3 and C = 0
– √[(2√3)2 + (2√3 + 3)2] ≤ (2√3 + 3) sin x + 2√3 cos x ≤ √[(2√3)2 + (2√3 + 3)2]
– √[12+12+9+12√3] ≤ (2√3 + 3) sin x + 2√3 cos x ≤ √[12+12+9+12√3]
– √[33+12√3] ≤ (2√3 + 3) sin x + 2√3 cos x ≤ √[33+12√3]
– √[15+12+6+12√3] ≤ (2√3 + 3) sin x + 2√3 cos x ≤ √[15+12+6+12√3]
We know that (12√3 + 6 < 12√5) because the value of √5 – √3 is more than 0.5
So if we replace, (12√3 + 6 with 12√5) the above inequality still holds.
So by rearranging the above expression √(15+12+12√5)we get, 2√3 + √15
– 2√3 + √15 ≤ (2√3 + 3) sin x + 2√3 cos x ≤ 2√3 + √15
Hence proved.
Comments