RD Sharma Solutions for Chapter 9 Exercise 9.1 are given here. In this exercise, we shall discuss problems based on the values of trigonometric functions at ‘2x’, ‘x’ and ‘x/2’ in terms of values at ‘x’, ‘x/2’ and ‘cos x’. The solutions for this exercise are prepared by experts at BYJU’S in the best possible ways to make them easily understandable for the students. RD Sharma Class 11 Solutions can be used as the best reference material for students to score high marks in their exams. Solutions to this exercise are readily accessible and are available in PDF format. Students can easily download the PDF from the links provided below.
RD Sharma Solutions for Class 11 Maths Exercise 9.1 Chapter 9 – Values of Trigonometric Functions at Multiples and Submultiples of an Angle
Also, access other exercises of RD Sharma Solutions for Class 11 Maths Chapter 9 – Values of Trigonometric Functions at Multiples and Submultiples of an Angle
Access answers to RD Sharma Solutions for Class 11 Maths Exercise 9.1 Chapter 9 – Values of Trigonometric Functions at Multiples and Submultiples of an Angle
Prove the following identities:
1. √[(1 – cos 2x) / (1 + cos 2x)] = tan x
Solution:
Let us consider LHS:
√[(1 – cos 2x) / (1 + cos 2x)]
We know that cos 2x = 1 – 2 sin2 x
= 2 cos2 x – 1
So,
√[(1 – cos 2x) / (1 + cos 2x)] = √[(1 – (1 – 2sin2 x)) / (1 + (2cos2x – 1))]
= √[(1 – 1 + 2sin2 x) / (1 + 2cos2 x – 1)]
= √[2 sin2 x / 2 cos2 x]
= sin x/cos x
= tan x
= RHS
Hence proved.
2. sin 2x / (1 – cos 2x) = cot x
Solution:
Let us consider LHS:
sin 2x / (1 – cos 2x)
We know that cos 2x = 1 – 2 sin2 x
Sin 2x = 2 sin x cos x
So,
sin 2x / (1 – cos 2x) = (2 sin x cos x) / (1 – (1 – 2sin2 x))
= (2 sin x cos x) / (1 – 1 + 2sin2 x)]
= [2 sin x cos x / 2 sin2 x]
= cos x/sin x
= cot x
= RHS
Hence proved.
3. sin 2x / (1 + cos 2x) = tan x
Solution:
Let us consider LHS:
sin 2x / (1 + cos 2x)
We know that cos 2x = 1 – 2 sin2 x
= 2 cos2 x – 1
Sin 2x = 2 sin x cos x
So,
sin 2x / (1 + cos 2x) = [2 sin x cos x / (1 + (2cos2x – 1))]
= [2 sin x cos x / (1 + 2cos2 x – 1)]
= [2 sin x cos x / 2 cos2 x]
= sin x/cos x
= tan x
= RHS
Hence proved.
5. [1 – cos 2x + sin 2x] / [1 + cos 2x + sin 2x] = tan x
Solution:
Let us consider LHS:
[1 – cos 2x + sin 2x] / [1 + cos 2x + sin 2x]We know that, cos 2x = 1 – 2 sin2 x
= 2 cos2 x – 1
Sin 2x = 2 sin x cos x
So,
6. [sin x + sin 2x] / [1 + cos x + cos 2x] = tan x
Solution:
Let us consider LHS:
[sin x + sin 2x] / [1 + cos x + cos 2x]We know that, cos 2x = cos2 x – sin2 x
Sin 2x = 2 sin x cos x
So,
= RHS
Hence proved.
7. cos 2x / (1 + sin 2x) = tan (π/4 – x)
Solution:
Let us consider LHS:
cos 2x / (1 + sin 2x)
We know that, cos 2x = cos2 x – sin2 x
Sin 2x = 2 sin x cos x
So,
8. cos x / (1 – sin x) = tan (π/4 + x/2)
Solution:
Let us consider LHS:
cos x / (1 – sin x)
We know that, cos 2x = cos2 x – sin2 x
Cos x = cos2 x/2 – sin2 x/2
Sin 2x = 2 sin x cos x
Sin x = 2 sin x/2 cos x/2
So,
11. (cos α + cos β) 2 + (sin α + sin β) 2 = 4 cos2 (α – β)/2
Solution:
Let us consider LHS:
(cos α + cos β)2 + (sin α + sin β)2
Upon expansion, we get,
(cos α + cos β)2 + (sin α + sin β)2 =
= cos2 α + cos2 β + 2 cos α cos β + sin2 α + sin2 β + 2 sin α sin β
= 2 + 2 cos α cos β + 2 sin α sin β
= 2 (1 + cos α cos β + sin α sin β)
= 2 (1 + cos (α – β)) [since, cos (A – B) = cos A cos B + sin A sin B]
= 2 (1 + 2 cos2 (α – β)/2 – 1) [since, cos2x = 2cos2 x – 1]
= 2 (2 cos2 (α – β)/2)
= 4 cos2 (α – β)/2
= RHS
Hence Proved.
12. sin2 (π/8 + x/2) – sin2 (π/8 – x/2) = 1/√2 sin x
Solution:
Let us consider LHS:
sin2 (π/8 + x/2) – sin2 (π/8 – x/2)
we know, sin2 A – sin2 B = sin (A+B) sin (A-B)
so,
sin2 (π/8 + x/2) – sin2 (π/8 – x/2) = sin (π/8 + x/2 + π/8 – x/2) sin (π/8 + x/2 – (π/8 – x/2))
= sin (π/8 + π/8) sin (π/8 + x/2 – π/8 + x/2)
= sin π/4 sin x
= 1/√2 sin x [since, since π/4 = 1/√2]
= RHS
Hence proved.
13. 1 + cos2 2x = 2 (cos4 x + sin4 x)
Solution:
Let us consider LHS:
1 + cos2 2x
We know, cos2x = cos2 x – sin2 x
cos2 x + sin2 x = 1
so,
1 + cos2 2x = (cos2 x + sin2 x) 2 + (cos2 x – sin2 x) 2
= (cos4 x + sin4 x + 2 cos2 x sin2 x) + (cos4 x + sin4 x – 2 cos2 x sin2 x)
= cos4 x + sin4 x + cos4 x + sin4 x
= 2 cos4 x + 2 sin4 x
= 2 (cos4 x + sin4 x)
= RHS
Hence proved.
14. cos3 2x + 3 cos 2x = 4 (cos6 x – sin6 x)
Solution:
Let us consider RHS:
4 (cos6 x – sin6 x)
Upon expansion, we get,
4 (cos6 x – sin6 x) = 4 [(cos2 x)3 – (sin2 x)3]
= 4 (cos2 x – sin2 x) (cos4 x + sin4 x + cos2 x sin2 x)
By using the formula,
a3 – b3 = (a-b) (a2 + b2 + ab)
= 4 cos 2x (cos4 x + sin4 x + cos2 x sin2 x + cos2 x sin2 x – cos2 x sin
We know, cos 2x = cos2 x – sin2 x
So,
= 4 cos 2x (cos4 x + sin4 x + 2 cos2 x sin2 x – cos2 x sin2 x)
= 4 cos 2x [(cos2 x)2 + (sin2 x)2 + 2 cos2 x sin2 x – cos2 x sin2 x]
We know, a2 + b2 + 2ab = (a + b)2
= 4 cos 2x [(1)2 – 1/4 (4 cos2 x sin2 x)]
= 4 cos 2x [(1)2 – 1/4 (2 cos x sin x)2]
We know, sin 2x = 2sin x cos x
= 4 cos 2x [(12) – 1/4 (sin 2x)2]
= 4 cos 2x (1 – 1/4 sin2 2x)
We know, sin2 x = 1 – cos2 x
= 4 cos 2x [1 – 1/4 (1 – cos2 2x)]
= 4 cos 2x [1 – 1/4 + 1/4 cos2 2x]
= 4 cos 2x [3/4 + 1/4 cos2 2x]
= 4 (3/4 cos 2x + 1/4 cos3 2x)
= 3 cos 2x + cos3 2x
= cos3 2x + 3 cos 2x
= LHS
Hence proved.
15. (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0
Solution:
Let us consider LHS:
(sin 3x + sin x) sin x + (cos 3x – cos x) cos x
= (sin 3x) (sin x) + sin2 x + (cos 3x) (cos x) – cos2 x
= [(sin 3x) (sin x) + (cos 3x) (cos x)] + (sin2 x – cos2 x)
= [(sin 3x) (sin x) + (cos 3x) (cos x)] – (cos2 x – sin2 x)
= cos (3x – x) – cos 2x
We know, cos 2x = cos2 x – sin2 x
cos A cos B + sin A sin B = cos(A – B)
So,
= cos 2x – cos 2x
= 0
= RHS
Hence Proved.
16. cos2 (π/4 – x) – sin2 (π/4 – x) = sin 2x
Solution:
Let us consider LHS:
cos2 (π/4 – x) – sin2 (π/4 – x)
We know, cos2 A – sin2 A = cos 2A
So,
cos2 (π/4 – x) – sin2 (π/4 – x) = cos 2 (π/4 – x)
= cos (π/2 – 2x)
= sin 2x [since, cos (π/2 – A) = sin A]
= RHS
Hence proved.
17. cos 4x = 1 – 8 cos2 x + 8 cos4 x
Solution:
Let us consider LHS:
cos 4x
We know, cos 2x = 2 cos2 x – 1
So,
cos 4x = 2 cos2 2x – 1
= 2(2 cos2 2x – 1)2 – 1
= 2[(2 cos2 2x) 2 + 12 – 2×2 cos2 x] – 1
= 2(4 cos4 2x + 1 – 4 cos2 x) – 1
= 8 cos4 2x + 2 – 8 cos2 x – 1
= 8 cos4 2x + 1 – 8 cos2 x
= RHS
Hence Proved.
18. sin 4x = 4 sin x cos3 x – 4 cos x sin3 x
Solution:
Let us consider LHS:
sin 4x
We know, sin 2x = 2 sin x cos x
cos 2x = cos2 x – sin2 x
So,
sin 4x = 2 sin 2x cos 2x
= 2 (2 sin x cos x) (cos2 x – sin2 x)
= 4 sin x cos x (cos2 x – sin2 x)
= 4 sin x cos3 x – 4 sin3 x cos x
= RHS
Hence proved.
19. 3(sin x – cos x) 4 + 6 (sin x + cos x) 2 + 4 (sin6 x + cos6 x) = 13
Solution:
Let us consider LHS:
3(sin x – cos x) 4 + 6 (sin x + cos x) 2 + 4 (sin6 x + cos6 x)
We know, (a + b)2 = a2 + b2 + 2ab
(a – b)2 = a2 + b2 – 2ab
a3 + b3 = (a + b) (a2 + b2 – ab)
So,
3(sin x – cos x) 4 + 6 (sin x + cos x) 2 + 4 (sin6 x + cos6 x) = 3{(sin x – cos x) 2}2 + 6 {(sin x)2 + (cos x)2 + 2 sin x cos x)} + 4 {(sin2 x)3 + (cos2 x)3}
= 3{(sin x) 2 + (cos x)2 – 2 sin x cos x)}2 + 6 (sin2 x + cos2 x + 2 sin x cos x) + 4{(sin2 x + cos2 x) (sin4 x + cos4 x – sin2 x cos2 x)}
= 3(1 – 2 sin x cos x) 2 + 6 (1 + 2 sin x cos x) + 4{(1) (sin4 x + cos4 x – sin2 x cos2 x)}
We know, sin2 x + cos2 x = 1
So,
= 3{12 + (2 sin x cos x) 2 – 4 sin x cos x} + 6 (1 + 2 sin x cos x) + 4{(sin2 x)2 + (cos2 x)2 + 2 sin2 x cos2 x – 3 sin2 x cos2 x)}
= 3{1 + 4 sin2 x cos2 x – 4 sin x cos x} + 6 (1 + 2 sin x cos x) + 4{(sin2 x + cos2 x) 2 – 3 sin2 x cos2 x)}
= 3 + 12 sin2 x cos2 x – 12 sin x cos x + 6 + 12 sin x cos x + 4{(1)2 – 3 sin2 x cos2 x)}
= 9 + 12 sin2 x cos2 x + 4(1 – 3 sin2 x cos2 x)
= 9 + 12 sin2 x cos2 x + 4 – 12 sin2 x cos2 x
= 13
= RHS
Hence proved.
20. 2(sin6 x + cos6 x) – 3(sin4 x + cos4 x) + 1 = 0
Solution:
Let us consider LHS:
2(sin6 x + cos6 x) – 3(sin4 x + cos4 x) + 1
We know, (a + b)2 = a2 + b2 + 2ab
a3 + b3 = (a + b) (a2 + b2 – ab)
So,
2(sin6 x + cos6 x) – 3(sin4 x + cos4 x) + 1 = 2{(sin2 x) 3 + (cos2 x) 3} – 3{(sin2 x) 2 + (cos2 x) 2} + 1
= 2{(sin2 x + cos2 x) (sin4 x + cos4 x – sin2 x cos2 x} – 3{(sin2 x) 2 + (cos2 x) 2 + 2sin2 x cos2 x – 2sin2 x cos2 x} + 1
= 2{(1) (sin4 x + cos4 x + 2 sin2 x cos2 x – 3 sin2 x cos2 x} – 3{(sin2 x + cos2 x) 2 – 2sin2 x cos2 x} + 1
We know, sin2 x + cos2 x = 1
= 2{(sin2 x + cos2 x) 2 – 3 sin2 x cos2 x} – 3{(1)2 – 2sin2 x cos2 x} + 1
= 2{(1)2 – 3 sin2 x cos2 x} – 3(1 – 2sin2 x cos2 x) + 1
= 2(1 – 3 sin2 x cos2 x) – 3 + 6 sin2 x cos2 x + 1
= 2 – 6 sin2 x cos2 x – 2 + 6 sin2 x cos2 x
= 0
= RHS
Hence proved.
21. cos6 x – sin6 x = cos 2x (1 – 1/4 sin2 2x)
Solution:
Let us consider LHS:
cos6 x – sin6 x
We know, (a + b) 2 = a2 + b2 + 2ab
a3 – b3 = (a – b) (a2 + b2 + ab)
So,
cos6 x – sin6 x = (cos2 x)3 – (sin2 x)3
= (cos2 x – sin2 x) (cos4 x + sin4 x + cos2 x sin2 x)
We know, cos 2x = cos2 x – sin2 x
So,
= cos 2x [(cos2 x) 2 + (sin2 x) 2 + 2 cos2 x sin2 x – cos2 x sin2 x]
= cos 2x [(cos2 x) 2 + (sin2 x) 2 – 1/4 × 4 cos2 x sin2 x]
We know, sin2 x + cos2 x = 1
So,
= cos 2x [(1)2 – 1/4 × (2 cos x sin x) 2]
We know, sin 2x = 2 sin x cos x
So,
= cos 2x [1 – 1/4 × (sin 2x) 2]
= cos 2x [1 – 1/4 × sin2 2x]
= RHS
Hence proved.
22. tan (π/4 + x) + tan (π/4 – x) = 2 sec 2x
Solution:
Let us consider LHS:
tan (π/4 + x) + tan (π/4 – x)
We know,
tan (A+B) = (tan A + tan B)/(1- tan A tan B)
tan (A-B) = (tan A – tan B)/(1+ tan A tan B)
So,
Comments