RD Sharma Solutions for Class 8 Maths Chapter - 7 Factorization Exercise 7.7

In the previous exercises, we were discussing concepts based on monomial and binomial expressions. In this exercise, we will discuss polynomials and the factorization of quadratic polynomials in one variable. The primary objective is to help students improve their problem-solving abilities, which in turn, helps in boosting their confidence level to achieve high marks in the annual exam. Students can refer to and download RD Sharma Solutions Class 8 Maths Exercise 7.7 Chapter 7 Factorization from the links given below.

RD Sharma Solutions for Class 8 Maths Exercise 7.7 Chapter 7 Factorization

Download PDF Download PDF

Access Answers to RD Sharma Solutions for Class 8 Maths Exercise 7.7 Chapter 7 Factorization

EXERCISE 7.7 PAGE NO: 7.27

Factorize each of the following algebraic expressions:

1. x2 + 12x – 45

Solution:

We have,

x2 + 12x – 45

To factorize the given expression, we have to find two numbers, p and q, such that p+q = 12 and pq = -45

So, we can replace 12x with 15x – 3x

-45 by 15 × 3

x2 + 12x – 45 = x2 + 15x – 3x – 45

= x (x + 15) – 3 (x + 15)

= (x – 3) (x + 15)

2. 40 + 3x – x2

Solution:

We have,

40 + 3x – x2

-(x2 – 3x – 40)

By considering, p+q = -3 and pq = -40

So, we can replace -3x with 5x – 8x

-40 by 5 × -8

-(x2 – 3x – 40) = x2 + 5x – 8x – 40

= -x (x + 5) – 8 (x + 5)

= -(x – 8) (x + 5)

= (-x + 8) (x + 5)

3. a2 + 3a – 88

Solution:

We have,

a2 + 3a – 88

By considering, p+q = 3 and pq = -88

So, we can replace 3a with 11a – 8a

-40 by -11 × 8

a2 + 3a – 88 = a2 + 11a – 8a – 88

= a (a + 11) – 8 (a + 11)

= (a – 8) (a + 11)

4. a2 – 14a – 51

Solution:

We have,

a2 – 14a – 51

By considering, p+q = -14 and pq = -51

So, we can replace -14a with 3a – 17a

-51 by -17 × 3

a2 – 14a – 51 = a2 + 3a – 17a – 51

= a (a + 3) – 17 (a + 3)

= (a – 17) (a + 3)

5. x2 + 14x + 45

Solution:

We have,

x2 + 14x + 45

By considering, p+q = 14 and pq = 45

So, we can replace 14x with 5x + 9x

45 by 5 × 9

x2 + 14x + 45 = x2 + 5x + 9x + 45

= x (x + 5) – 9 (x + 5)

= (x + 9) (x + 5)

6. x2 – 22x + 120

Solution:

We have,

x2 – 22x + 120

By considering, p+q = -22 and pq = 120

So, we can replace -22x with -12x -10x

120 by -12 × -10

x2 – 22x + 120 = x2 – 12x – 10x + 120

= x (x – 12) – 10 (x – 12)

= (x – 10) (x – 12)

7. x2 – 11x – 42

Solution:

We have,

x2 – 11x – 42

By considering, p+q = -11 and pq = -42

So, we can replace -11x with 3x -14x

-42 by 3 × -14

x2 – 11x – 42 = x2 + 3x – 14x – 42

= x (x + 3) – 14 (x + 3)

= (x – 14) (x + 3)

8. a2 + 2a – 3

Solution:

We have,

a2 + 2a – 3

By considering, p+q = 2 and pq = -3

So, we can replace 2a with 3a -a

-3 by 3 × -1

a2 + 2a – 3 = a2 + 3a – a – 3

= a (a + 3) – 1 (a + 3)

= (a – 1) (a + 3)

9. a2 + 14a + 48

Solution:

We have,

a2 + 14a + 48

By considering, p+q = 14 and pq = 48

So, we can replace 14a with 8a + 6a

48 by 8 × 6

a2 + 14a + 48 = a2 + 8a + 6a + 48

= a (a + 8) + 6 (a + 8)

= (a + 6) (a + 8)

10. x2 – 4x – 21

Solution:

We have,

x2 – 4x – 21

By considering, p+q = -4 and pq = -21

So, we can replace -4x with 3x – 7x

-21 by 3 × -7

x2 + 4x – 21 = x2 + 3x – 7x – 21

= x (x + 3) – 7 (x + 3)

= (x – 7) (x + 3)

11. y2 + 5y – 36

Solution:

We have,

y2 + 5y – 36

By considering, p+q = 5 and pq = -36

So, we can replace 5y with 9y – 4y

-36 by 9 × -4

y2 + 5y – 36 = y2 + 9y – 4y – 36

= y (y + 9) – 4 (y + 9)

= (y – 4) (y + 9)

12. (a2 – 5a)2 – 36

Solution:

We have,

(a2 – 5a)2 – 36

(a2 – 5a)2 – 62

By using the formula (a2 – b2) = (a+b) (a-b)

(a2 – 5a)2 – 62 = (a2 – 5a + 6) (a2 – 5a – 6)

So now we shall factorize the expression (a2 – 5a + 6)

By considering, p+q = -5 and pq = 6

So, we can replace -5a with a -6a

6 by 1 × -6

a2 -5a – 6 = a2 + a – 6a – 6

= a (a + 1) -6(a + 1)

= (a – 6) (a + 1)

So now we shall factorize the expression (a2 – 5a + 6)

By considering, p+q = -5 and pq = -6

So, we can replace -5a with -2a -3a

6 by -2 × -3

a2 -5a + 6 = a2 – 2a – 3a + 6

= a (a – 2) -3 (a – 2)

= (a – 3) (a – 2)

∴ (a2 – 5a)2 – 36 = (a2 – 5a + 6) (a2 – 5a – 6)

= (a + 1) (a – 6) (a – 2) (a – 3)

13. (a + 7) (a – 10) + 16

Solution:

We have,

(a + 7) (a – 10) + 16

a2 – 10a + 7a – 70 + 16

a2 – 3a – 54

By considering, p+q = -3 and pq = -54

So, we can replace -3a with 6a – 9a

-54 by 6 × -9

a2 – 3a – 54 = a2 + 6a – 9a – 54

= a (a + 6) -9 (a + 6)

= (a – 9) (a + 6)

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*

Tuition Center
Tuition Centre
free trial
Free Trial Class
Scholarship Test
Scholarship Test
Question and Answer
Question & Answer