In this sub-section, we shall discuss some results on inequations involving modulus of the variable. We state and prove these results as theorems.
Students having any difficulties in solving the problems can use RD Sharma Class 11 Solutions as reference material. Our experts have solved the problems in a simple and easily understandable manner, which any student can understand and, thereby, score well in their exams. To access RD Sharma Class 11 Maths Solutions, students have to download the PDF from the links given below.
RD Sharma Solutions for Class 11 Maths Exercise 15.3 Chapter 15 – Linear Inequations
Also, access other exercises of RD Sharma Solutions for Class 11 Maths Chapter 15 – Linear Inequations
Access answers to RD Sharma Solutions for Class 11 Maths Exercise 15.3 Chapter 15 – Linear Inequations
Solve each of the following system of equations in R.
1. |x + 1/3| > 8/3
Solution:
Let ‘r’ be a positive real number and ‘a’ be a fixed real number. Then,
|x + a| > r ⟺ x > r – a or x < – (a + r)
Here, a = 1/3 and r = 8/3
x > 8/3 – 1/3 or x < – (8/3 + 1/3)
x > (8-1)/3 or x < – (8+1)/3
x > 7/3 or x < – 9/3
x > 7/3 or x < – 3
x ∈ (7/3, ∞) or x ∈ (–∞, -3)
∴ x ∈ (–∞, -3) ∪ (7/3, ∞)
2. |4 – x| + 1 < 3
Solution:
|4 – x | + 1 < 3
Let us subtract 1 from both sides, we get
|4 – x| + 1 – 1 < 3 – 1
|4 – x| < 2
Let ‘r’ be a positive real number and ‘a’ be a fixed real number. Then,
|a – x| < r ⟺ a – r < x < a + r
Here, a=4 and r=2
4 – 2 < x < 4 + 2
2 < x < 6
∴ x ∈ (2, 6)
3. | (3x – 4)/2 | ≤ 5/12
Solution:
Given:
| (3x – 4)/2 | ≤ 5/12
We can rewrite it as
| 3x/2 – 4/2 | ≤ 5/12
| 3x/2 – 2 | ≤ 5/12
Let ‘r’ be a positive real number and ‘a’ be a fixed real number. Then,
|x – a| ≤ r ⟺ a – r ≤ x ≤ a + r
Here, a = 2 and r = 5/12
2 – 5/12 ≤ 3x/2 ≤ 2 + 5/12
(24-5)/12 ≤ 3x/2 ≤ (24+5)/12
19/12 ≤ 3x/2 ≤ 29/12
Now, multiplying the whole inequality by 2 and dividing by 3, we get
19/18 ≤ x ≤ 29/18
∴ x ∈ [19/18, 29/18]
4. |x – 2| / (x – 2) > 0
Solution:
Given:
|x – 2| / (x – 2) > 0
Clearly it states, x≠2, so two cases arise:
Case1: x–2>0
x>2
In this case |x–2| = x – 2
x ϵ (2, ∞)….(1)
Case 2: x–2<0
x<2
In this case, |x–2|= – (x–2)
– (x – 2) / (x – 2) > 0
– 1 > 0
Inequality doesn’t get satisfied
This case gets nullified.
∴ x ∈ (2, ∞) from (1)
5. 1 / (|x| – 3) < ½
Solution:
We know that, if we take the reciprocal of any inequality, we need to change the inequality as well.
Also, |x| – 3 ≠ 0
|x| > 3 or |x| < 3
For |x| < 3
–3 < x < 3
x ∈ (–3, 3) …. (1)
The equation can be rewritten as
|x| – 3 > 2
Let us add 3 on both sides, and we get
|x| – 3 + 3 > 2 + 3
|x| > 5
Let ‘a’ be a fixed real number. Then,
|x | > a ⟺ x < –a or x > a
Here, a = 5
x < –5 or x > 5 …. (2)
From (1) and (2)
x ∈ (–∞,–5 ) or x ∈ (5, ∞)
∴ x ∈ (–∞,–5 ) ⋃ (–3, 3) ⋃ (5, ∞)
6. (|x + 2| – x) / x < 2
Solution:
Given:
(|x + 2| – x) / x < 2
Let us rewrite the equation as
|x + 2|/x – x/x < 2
|x + 2|/x – 1 < 2
By adding 1 on both sides, we get
|x + 2|/x – 1 + 1 < 2 + 1
|x + 2|/x < 3
By subtracting 3 on both sides, we get
|x + 2|/x – 3 < 3 – 3
|x + 2|/x – 3 < 0
Clearly, it states, x ≠ -2, so two cases arise:
Case1: x + 2 > 0
x > –2
In this case |x+2| = x + 2
x + 2/x – 3 < 0
(x + 2 – 3x)/x < 0
– (2x – 2)/x < 0
(2x – 2)/x < 0
Let us consider only the numerators, we get
2x – 2 > 0
x>1
x ϵ (1, ∞) ….(1)
Case 2: x + 2 < 0
x < –2
In this case, |x+2| = – (x + 2)
-(x+2)/x – 3 < 0
(-x – 2 – 3x)/x < 0
– (4x + 2)/x < 0
(4x + 2)/x < 0
Let us consider only the numerators, we get
4x + 2 > 0
x > – ½
But x < -2
From the denominator, we have,
x ∈ (–∞ , 0) …(2)
From (1) and (2)
∴ x ∈ (–∞ , 0) ⋃ (1, ∞)
Comments