# RD Sharma Solutions for Class 6 Maths Chapter 15: Pair of Lines and Transversal

In this Chapter, the students gain knowledge about steps followed in the construction of parallel lines and to find the distance between them. It also helps students understand other concepts like transversals, angles made by a transversal and relations between angles. Two lines which lie in the same plane and do not intersect when produced indefinitely are called parallel lines.

Students can refer to the solutions designed by subject matter experts at BYJUâ€™S in order to perform better in the exam. RD Sharma Solutions for Class 6 Chapter 15 Pair of Lines and Transversal PDF can be downloaded by the students from the respective links which are available here.

## Access answers to Maths RD Sharma Solutions for Class 6 Chapter 15: Pair of Lines and Transversal

### Exercise 15.1 page: 15.2

1. Identify parallel line segments shown in Fig. 15.6.

Solution:

(i) From the figure we know that BC || DE.

(ii) From the figure we know that AB || DC, AD || BC.

(iii) From the figure we know that AB || DC and AD || BC.

(iv) From the figure we know that PQ || TS, UT || QR and UP || SR.

(v) From the figure we know that AB || EF || CD, BC || AD and CF || DE.

(vi) From the figure we know that EF || BC, AB || DF and AC || DE.

2. Name the pairs of all possible parallel edges of the pencil box whose figure is shown in Fig. 15.7.

Solution:

The pairs of all possible parallel edges of the pencil box are

AB || DC || HE || GF, AD || GH || BC || EF and AH || DG || BE || CF

3. In Fig. 15.8, do the segments AB and CD intersect? Are they parallel? Give reasons.

Solution:

No, AB and CD do not intersect but they can intersect if extended further. No AB and CD are not parallel since, the distance between them is not constant.

4. State which of the following statements are true (T) or which are false (F):

(i) If two lines in the same plane do not intersect, then they must be parallel.

(ii) Distance between two parallel lines is not same everywhere.

(iii) If m âŠ¥ l, n âŠ¥ l and m â‰  n, then m || n.

(iv) Two non-intersecting coplanar rays are parallel.

(v) If ray AB || line m, then line segment AB.

(vi) If line AB || line m, then line segment AB || m.

(vii) No two parallel line segments intersect.

(viii) Every pair of lines is a pair of coplanar lines.

(ix) Two lines perpendicular to the same line are parallel.

(x) A line perpendicular to one of two parallel lines is perpendicular to the other.

Solution:

(i) True

(ii) False

(iii) True

(iv) False

(v) True

(vi) True

(vii) True

(viii) False

(ix) True

(x) True

### Exercise 15.2 page: 15.6

1. In Fig. 15.17, line n is a transversal to lines l and m. Identify the following:

(i) Alternate and corresponding angles in Fig. 15.17 (i).

(ii) Angles alternate to âˆ d and âˆ g and angles corresponding to âˆ f and âˆ h in Fig. 15.17 (ii).

(iii) Angle alternative to âˆ PQR, angle corresponding to âˆ RQF and angle alternate to âˆ PQE in Fig. 15.17 (iii).

(iv) Pairs of interior and exterior angles on the same side of the transversal in Fig. 15.17 (ii).

Solution:

(i) Alternate interior angles are âˆ BGH and âˆ CHG; âˆ AGH and âˆ CHF

Alternate exterior angles are âˆ AGE and âˆ DHF; âˆ EGB and âˆ CHF

Corresponding angles are âˆ EGB and âˆ GHD; âˆ EGA and âˆ GHC; âˆ BGH and âˆ DHF; âˆ AGF and âˆ CHF.

(ii) Angles alternate to âˆ d and âˆ g are âˆ e and âˆ b and angles corresponding to âˆ f and âˆ h are âˆ c and âˆ a.

(iii) From the figure we know that l is transversal to m and n.

Angle alternate to âˆ PQR is âˆ QRA

Angle corresponding to âˆ RQF is âˆ BRA

Angle alternate to âˆ PQE is âˆ BRA

(iv) Interior angles are âˆ d, âˆ f and âˆ a, âˆ e and exterior angles are âˆ c, âˆ g and âˆ b, âˆ h

2. Match column A and column B with the help of the Fig. 15.18:

Column A Column B

(i) Vertically opposite angles (i) âˆ PAB and âˆ ABS

(ii) Alternate angles (ii) âˆ PAB and âˆ RBY

(iii) Corresponding angles (iii) âˆ PAB and âˆ XAQ

Solution:

(i) âˆ PAB and âˆ XAQ are vertically opposite angles

(ii) âˆ PAB and âˆ ABS are alternate angles

(iii) âˆ PAB and âˆ RBY are corresponding angles